topicModelingTickets/testo.py

876 lines
22 KiB
Python
Raw Normal View History

2017-09-18 16:08:11 +02:00
# -*- coding: utf-8 -*-
2017-09-25 13:12:23 +02:00
from datetime import datetime
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
print(datetime.now())
2017-09-18 16:08:11 +02:00
import time
2017-09-21 12:05:32 +02:00
import enchant
2017-09-18 16:08:11 +02:00
start = time.time()
import logging
import csv
import functools
import os.path
import re
import subprocess
import time
import xml.etree.ElementTree as ET
import sys
import spacy
import textacy
from scipy import *
from textacy import Vectorizer
import warnings
import configparser as ConfigParser
import sys
2017-09-20 15:22:13 +02:00
import hunspell
from postal.parser import parse_address
2017-09-18 16:08:11 +02:00
csv.field_size_limit(sys.maxsize)
2017-09-25 13:12:23 +02:00
#ssh madonna "nohup /usr/bin/python3 -u /home/jannis.grundmann/PycharmProjects/topicModelingTickets/testo.py &> /home/jannis.grundmann/PycharmProjects/topicModelingTickets/printout.log &"
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
# todo configuration file
"""
2017-09-18 16:08:11 +02:00
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
2017-09-25 13:12:23 +02:00
"""
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
logile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
2017-09-18 16:08:11 +02:00
# config logging
2017-09-25 13:12:23 +02:00
logging.basicConfig(filename=logile, level=logging.INFO)
#logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
thesauruspath = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/openthesaurus.csv"
#thesauruspath = config.get("filepath","thesauruspath")
2017-09-18 16:08:11 +02:00
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
2017-09-21 12:05:32 +02:00
from langdetect import detect
2017-09-18 16:08:11 +02:00
DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen
2017-09-21 12:05:32 +02:00
#EN_PARSER = spacy.load("en")
2017-09-18 16:08:11 +02:00
2017-09-20 15:22:13 +02:00
def replaceRockDots():
return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
"""
de_stop_words= set(
list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) +
list(textacy.fileio.read_file_lines("stopwords-de.txt"))
)
2017-09-18 16:08:11 +02:00
2017-09-20 15:22:13 +02:00
LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
2017-09-18 16:08:11 +02:00
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
2017-09-20 15:22:13 +02:00
"""
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")))
2017-09-21 12:05:32 +02:00
#en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS))
2017-09-25 13:12:23 +02:00
LEMMAS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames.txt")))
NOUNS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen2.txt"))
NOUNS = NOUNS +list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen.txt"))
NOUNS = list(map(textacy.preprocess.normalize_whitespace, NOUNS))
2017-09-20 15:22:13 +02:00
print(de_stop_words[10:30])
2017-09-21 12:05:32 +02:00
2017-09-20 15:22:13 +02:00
print(LEMMAS[10:30])
print(VORNAMEN[10:30])
2017-09-25 13:12:23 +02:00
print(NOUNS[10:30])
2017-09-18 16:08:11 +02:00
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
def printlog(string, level="INFO"):
"""log and prints"""
print(string)
if level=="INFO":
logging.info(string)
elif level=="DEBUG":
logging.debug(string)
elif level == "WARNING":
logging.warning(string)
2017-09-25 13:12:23 +02:00
printlog(str(datetime.now()))
2017-09-18 16:08:11 +02:00
printlog("Load functions")
def compose(*functions):
def compose2(f, g):
return lambda x: f(g(x))
return functools.reduce(compose2, functions, lambda x: x)
def get_calling_function():
"""finds the calling function in many decent cases.
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
"""
fr = sys._getframe(1) # inspect.stack()[1][0]
co = fr.f_code
for get in (
lambda:fr.f_globals[co.co_name],
lambda:getattr(fr.f_locals['self'], co.co_name),
lambda:getattr(fr.f_locals['cls'], co.co_name),
lambda:fr.f_back.f_locals[co.co_name], # nested
lambda:fr.f_back.f_locals['func'], # decorators
lambda:fr.f_back.f_locals['meth'],
lambda:fr.f_back.f_locals['f'],
):
try:
func = get()
except (KeyError, AttributeError):
pass
else:
if func.__code__ == co:
return func
raise AttributeError("func not found")
def printRandomDoc(textacyCorpus):
import random
print()
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
randIndex = int((len(textacyCorpus) - 1) * random.random())
2017-09-25 13:12:23 +02:00
printlog("Index: {0} ; Text: {1} ; Metadata: {2}\n".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
2017-09-18 16:08:11 +02:00
print()
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
"""
:param path2csv: string
:param content_collumn_name: string
:return: string-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
for i,lst in enumerate(stream):
if i == 0:
# look for desired column
for j,col in enumerate(lst):
if col == content_collumn_name:
content_collumn = j
else:
yield lst[content_collumn]
2017-09-25 13:12:23 +02:00
def csv_to_metaStream(path2csv: str, metalist: [str]):
"""
:param path2csv: string
:param metalist: list of strings
:return: dict-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
metaindices = []
metadata_temp = {}
for i, lst in enumerate(stream):
if i == 0:
for j, col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
for key in metalist:
if key == col:
metaindices.append(j)
metadata_temp = dict(
zip(metalist, metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
else:
metadata = metadata_temp.copy()
for key, value in metadata.items():
metadata[key] = lst[value]
yield metadata
2017-09-18 16:08:11 +02:00
2017-09-21 12:05:32 +02:00
############# filter tokens
2017-09-18 16:08:11 +02:00
def keepPOS(pos_list):
return lambda tok : tok.pos_ in pos_list
2017-09-25 13:12:23 +02:00
def keepNouns(noun_list=NOUNS):
return lambda tok : tok.lower_ in noun_list
2017-09-18 16:08:11 +02:00
def removePOS(pos_list):
return lambda tok : tok.pos_ not in pos_list
def removeWords(words, keep=None):
if hasattr(keep, '__iter__'):
for k in keep:
try:
words.remove(k)
except ValueError:
pass
return lambda tok : tok.lower_ not in words
def keepENT(ent_list):
return lambda tok : tok.ent_type_ in ent_list
def removeENT(ent_list):
return lambda tok: tok.ent_type_ not in ent_list
def remove_words_containing_Numbers():
return lambda tok: not bool(re.search('\d', tok.lower_))
2017-09-21 12:05:32 +02:00
2017-09-20 15:22:13 +02:00
"""
def remove_words_containing_topLVL():
return lambda tok: not bool(re.search(regex_topLvl, tok.lower_))
2017-09-25 13:12:23 +02:00
2017-09-21 12:05:32 +02:00
2017-09-18 16:08:11 +02:00
def remove_words_containing_specialCharacters():
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
2017-09-25 13:12:23 +02:00
"""
2017-09-18 16:08:11 +02:00
def remove_long_words():
return lambda tok: not len(tok.lower_) < 2
def remove_short_words():
return lambda tok: not len(tok.lower_) > 35
def remove_first_names():
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
2017-09-18 16:08:11 +02:00
############# strings
2017-09-20 15:22:13 +02:00
def remove_addresses(string):
pass #todo
2017-09-25 13:12:23 +02:00
"""
2017-09-18 16:08:11 +02:00
def stringcleaning(stringstream, funclist):
for string in stringstream:
for f in funclist:
2017-09-25 13:12:23 +02:00
2017-09-18 16:08:11 +02:00
string = f(string)
yield string
2017-09-20 15:22:13 +02:00
def cut_after(word="gruss"):
return lambda string: string.rpartition(word)[0] if word in string else string
2017-09-18 16:08:11 +02:00
def seperate_words_on_regex(regex=regex_specialChars):
return lambda string: " ".join(re.compile(regex).split(string))
2017-09-20 15:22:13 +02:00
2017-09-18 16:08:11 +02:00
def remove_words_containing_topLVL():
return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ])
def replaceSpecialChars(replace_with=" "):
return lambda string: re.sub(regex_specialChars, replace_with, string.lower())
def replaceNumbers(replace_with="NUMBER"):
return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with)
def replacePhonenumbers(replace_with="PHONENUMBER"):
return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with)
def replaceSharpS(replace_with="ss"):
2017-09-18 16:08:11 +02:00
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
def fixUnicode():
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
2017-09-25 13:12:23 +02:00
"""
2017-09-18 16:08:11 +02:00
2017-09-20 15:22:13 +02:00
"""
2017-09-18 16:08:11 +02:00
def lemmatizeWord(word,filepath=LEMMAS):
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
if word.lower() == line.split()[1].strip().lower():
return line.split()[0].strip().lower()
return word.lower() # falls nix gefunden wurde
2017-09-25 13:12:23 +02:00
2017-09-20 15:22:13 +02:00
def create_lemma_dicts(lemmalist=LEMMAS):
w_dict = {}
lem_dict = {}
for i, line in enumerate(lemmalist):
try:
lem_word_pair = line.split()
if len(lem_word_pair) != 2:
print(line)
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
except:
print(line)
2017-09-18 16:08:11 +02:00
2017-09-20 15:22:13 +02:00
if lemma not in lem_dict:
lem_dict[lemma] = i
2017-09-18 16:08:11 +02:00
2017-09-20 15:22:13 +02:00
if word not in w_dict:
w_dict[word] = lem_dict[lemma]
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
return l_dict,w_dict
lemma_dict,word_dict = create_lemma_dicts()
def lemmatizeWord(word,l_dict=lemma_dict,w_dict=word_dict):
#mehrmals machen
for i in range(3):
try:
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
except:
print(word)
return word
2017-09-25 13:12:23 +02:00
2017-09-18 16:08:11 +02:00
def lemmatize():
return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc])
2017-09-25 13:12:23 +02:00
2017-09-20 15:22:13 +02:00
def lemmatize():
return lambda string: " ".join([lemmatizeWord(s.lower()) for s in string.split()])
2017-09-18 16:08:11 +02:00
2017-09-21 12:05:32 +02:00
DE_SPELLCHECKER = enchant.Dict("de_DE")
EN_SPELLCHECKER = enchant.Dict("en_US")
def autocorrectWord(word,spellchecker=DE_SPELLCHECKER):
try:
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
except:
return word
2017-09-20 15:22:13 +02:00
def autocorrect():
return lambda string: " ".join([autocorrectWord(s.lower()) for s in string.split()])
2017-09-25 13:12:23 +02:00
"""
def create_lemma_dicts(lemmalist=LEMMAS):
w_dict = {}
lem_dict = {}
for i, line in enumerate(lemmalist):
try:
lem_word_pair = line.split()
if len(lem_word_pair) != 2:
print(line)
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
except:
print(line)
if lemma not in lem_dict:
lem_dict[lemma] = i
if word not in w_dict:
w_dict[word] = lem_dict[lemma]
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
return l_dict, w_dict
lemma_dict, word_dict = create_lemma_dicts()
def lemmatizeWord(word, l_dict=lemma_dict, w_dict=word_dict, n=3):
# mehrmals machen
for i in range(n):
try:
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
except:
print(word)
return word
DE_SPELLCHECKER = enchant.Dict("de_DE")
EN_SPELLCHECKER = enchant.Dict("en_US")
def autocorrectWord(word, spellchecker=DE_SPELLCHECKER):
try:
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
except:
return word
############# stringcleaning
def stringcleaning(stringstream):
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
for string in stringstream:
string = string.lower()
# fixUnicode
string = textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
# remove_words_containing_topLVL
string = " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w)])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# seperate_words_on_regex:
string = " ".join(re.compile(regex_specialChars).split(string))
# cut_after
word = "gruss"
string = string.rpartition(word)[0] if word in string else string
# lemmatize
string = " ".join([lemmatizeWord(word) for word in string.split()])
# autocorrect
#string = " ".join([autocorrectWord(word) for word in string.split()])
yield string
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
def processContentstream(textstream, token_filterlist=None, parser=DE_PARSER):
2017-09-18 16:08:11 +02:00
"""
:param textstream: string-gen
:param funclist: [func]
:param parser: spacy-parser
:return: string-gen
"""
2017-09-20 15:22:13 +02:00
2017-09-25 13:12:23 +02:00
"""
filter_tokens=[
#removeENT(["PERSON"]),
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
#idee rechtschreibkorrektur --> PyEnchant
#idee thesaurus --> WordNet, eigener
remove_words_containing_Numbers(),
removePOS(["PUNCT","SPACE","NUM"]),
removeWords(de_stop_words+custom_words),
remove_long_words(),
remove_short_words(),
remove_first_names(),
keepPOS(["NOUN"]),
]
"""
#pre_parse
textstream = stringcleaning(textstream)
2017-09-20 15:22:13 +02:00
pipe = parser.pipe(textstream)
tokens=[]
2017-09-18 16:08:11 +02:00
for doc in pipe:
tokens = [tok for tok in doc]
#print(" ".join([tok.lower_ for tok in tokens]))
2017-09-18 16:08:11 +02:00
2017-09-20 15:22:13 +02:00
# in_parse
2017-09-25 13:12:23 +02:00
if token_filterlist is not None:
tokens = filterTokens(tokens, token_filterlist)
2017-09-20 15:22:13 +02:00
2017-09-25 13:12:23 +02:00
yield " ".join([tok.lower_ for tok in tokens])
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
def processDictstream(dictstream, funcdict, parser=DE_PARSER):
"""
:param dictstream: dict-gen
:param funcdict:
clean_in_meta = {
"Solution":funclist,
...
}
:param parser: spacy-parser
:return: dict-gen
"""
for dic in dictstream:
result = {}
for key, value in dic.items():
if key in funcdict:
doc = parser(value)
tokens = [tok for tok in doc]
funclist = funcdict[key]
tokens = filterTokens(tokens, funclist)
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
result[key] = " ".join([tok.lower_ for tok in tokens])
2017-09-25 13:12:23 +02:00
else:
result[key] = value
yield result
def filterTokens(tokens, funclist):
2017-09-18 16:08:11 +02:00
# in:tokenlist, funclist
# out: tokenlist
for f in funclist:
tokens = list(filter(f, tokens))
return tokens
2017-09-21 12:05:32 +02:00
custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","voraus",
"hallo","gerne","freundlich","fragen","fehler","bitten","ehre", "lieb","helfen"
"versuchen","unbestimmt","woche","tadelos", "klappen" ,"mittlerweile", "bekommen","erreichbar","gruss",
"auffahren","vorgang","hinweis","institut","universitaet","name","gruss","id","erfolg","mail","folge",
"nummer","team","fakultaet","email","absender","tu","versenden","vorname","message",
"service","strasse","prozess","portal","raum","personal","moeglichkeit","fremd","wende","rueckfrage", "stehen", "verfuegung"
"funktionieren","kollege", "pruefen"
2017-09-20 15:22:13 +02:00
]
2017-09-25 13:12:23 +02:00
filter_tokens=[
#removeENT(["PERSON"]),
2017-09-25 13:12:23 +02:00
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
#idee rechtschreibkorrektur --> PyEnchant
#idee thesaurus --> WordNet
keepNouns(),
2017-09-20 15:22:13 +02:00
2017-09-18 16:08:11 +02:00
remove_words_containing_Numbers(),
2017-09-20 15:22:13 +02:00
2017-09-18 16:08:11 +02:00
removePOS(["PUNCT","SPACE","NUM"]),
2017-09-20 15:22:13 +02:00
removeWords(de_stop_words+custom_words),
2017-09-18 16:08:11 +02:00
remove_long_words(),
remove_short_words(),
2017-09-25 13:12:23 +02:00
remove_first_names()
#keepPOS(["NOUN"]),
2017-09-18 16:08:11 +02:00
]
2017-09-20 15:22:13 +02:00
2017-09-25 13:12:23 +02:00
metaliste = [
"Subject",
"categoryName",
"Solution"
]
clean_in_meta = {
"Solution":[removePOS(["SPACE"])],
"Subject":[removePOS(["SPACE","PUNCT"])],
"categoryName": [removePOS(["SPACE", "PUNCT"])]
}
2017-09-18 16:08:11 +02:00
"""
pipe=[
##String
fixUnicode(),
replaceHardS(),
resolveAbbrivations(),
remove_words_containing_topLVL(),
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
remove_words_containing_Numbers(),
##spacyParse
removeENT("PERSON"),
keepPOS(["NOUN"]),
#ODER
lemmatize(),
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
# evtl.
spellCorrection(),
keepUniqeTokens(),
]
"""
2017-09-25 13:12:23 +02:00
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
2017-09-21 12:05:32 +02:00
de_corpus = textacy.Corpus(DE_PARSER)
#en_corpus = textacy.Corpus(EN_PARSER)
2017-09-18 16:08:11 +02:00
## add files to textacy-corpus,
printlog("add texts to textacy-corpus")
2017-09-21 12:05:32 +02:00
de_corpus.add_texts(
2017-09-25 13:12:23 +02:00
processContentstream(csv_to_contentStream(path2csv,"Description"), token_filterlist=filter_tokens),
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
2017-09-18 16:08:11 +02:00
)
for i in range(10):
2017-09-21 12:05:32 +02:00
printRandomDoc(de_corpus)
2017-09-18 16:08:11 +02:00
2017-09-25 13:12:23 +02:00
end = time.time()
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
2017-09-18 16:08:11 +02:00
2017-09-21 12:05:32 +02:00
############################################ Topic Modeling #############################################
print("\n\n")
start = time.time()
ngrams = 1
min_df = 0.1
max_df = 0.6
#no_below = 20
#no_above = 0.5
2017-09-21 12:05:32 +02:00
topicModel = 'lda'
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
top_topic_words = 15
top_document_labels_per_topic = 7
2017-09-21 12:05:32 +02:00
n_topics = 20 #len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
2017-09-21 12:05:32 +02:00
####################'####################
printlog("vectorize corpus...")
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in de_corpus)
doc_term_matrix = vectorizer.fit_transform(terms_list)
id2term = vectorizer.__getattribute__("id_to_term")
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
# Initialize and train a topic model
printlog("Initialize and train a topic model..")
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
model.fit(doc_term_matrix)
#Transform the corpus and interpret our model:
printlog("Transform the corpus and interpret our model..")
doc_topic_matrix = model.transform(doc_term_matrix)
print()
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
2017-09-25 13:12:23 +02:00
printlog('topic {0}: {1}'.format(topic_idx, " ".join(top_terms)))
2017-09-21 12:05:32 +02:00
print()
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
2017-09-25 13:12:23 +02:00
printlog(topic_idx)
2017-09-21 12:05:32 +02:00
for j in top_docs:
2017-09-25 13:12:23 +02:00
printlog(de_corpus[j].metadata['categoryName'])
print()
2017-09-21 12:05:32 +02:00
#####################################################################################################################
print()
print()
end = time.time()
2017-09-25 13:12:23 +02:00
printlog("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start)/60,topicModel))
"""
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
print("\n\n")
start = time.time()
n_topics = len(LABELDICT) #len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
# build citionary of ticketcategories
labelist = []
for texdoc in de_corpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
labelist.append(texdoc.metadata["categoryName"])
LABELDICT = {k: v for v, k in enumerate(labelist)}
print(LABELDICT)
def label2ID(label,labeldict=LABELDICT):
return labeldict.get(label,len(labeldict))
def generate_labled_lines(textacyCorpus):
for doc in textacyCorpus:
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
jgibbsLLDA_root = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/java_LabledLDA/"
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
#create file
textacy.fileio.write_file_lines(generate_labled_lines(de_corpus), filepath=LLDA_filepath)
# wait for file to exist
while not os.path.exists(LLDA_filepath):
time.sleep(1)
print("\n\n")
printlog("start LLDA:")
#run JGibsslda file
FNULL = open(os.devnull, 'w') # supress output
subprocess.call(["java",
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
"jgibblda.LDA",
"-est",
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
"-dfile","tickets.gz",
"-twords",str(top_topic_words),
"-ntopics", str(n_topics)], stdout = FNULL)
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
#twords
subprocess.call(["gzip",
"-dc",
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
#####################################################################################################################
print()
print()
end = time.time()
printlog("\n\n\nTime Elapsed Topic Modeling JGibbsLLDA:{0} min\n\n".format((end - start)/60))
"""