topicModelingTickets/topicModeling.py

794 lines
22 KiB
Python
Raw Normal View History

2017-10-10 14:42:09 +02:00
# -*- coding: utf-8 -*-
2017-12-08 11:06:07 +01:00
import matplotlib
matplotlib.use('Agg')
2017-10-10 14:42:09 +02:00
from datetime import datetime
2017-11-17 11:46:57 +01:00
import draw
import draw1
2017-10-10 14:42:09 +02:00
import time
2017-11-06 12:54:59 +01:00
import numpy as np
2017-11-27 12:49:05 +01:00
import operator
2017-10-10 14:42:09 +02:00
2017-10-16 14:01:38 +02:00
import csv
import sys
2017-10-18 17:37:20 +02:00
import json
import os.path
import subprocess
2017-11-03 11:49:26 +01:00
from textacy import Vectorizer, viz
2017-10-16 14:01:38 +02:00
2017-10-18 17:37:20 +02:00
from miscellaneous import *
2017-10-16 14:01:38 +02:00
import textacy
from scipy import *
2017-10-18 17:37:20 +02:00
import os
2017-12-08 11:06:07 +01:00
2017-10-16 14:01:38 +02:00
csv.field_size_limit(sys.maxsize)
2017-10-18 17:37:20 +02:00
FILEPATH = os.path.dirname(os.path.realpath(__file__)) + "/"
2017-10-10 14:42:09 +02:00
2017-10-18 17:37:20 +02:00
# load config
config_ini = FILEPATH + "config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
2017-10-10 14:42:09 +02:00
2017-11-06 12:54:59 +01:00
def textacyTopicModeling(corpus,
n_topics = 15, top_topic_words = 7, top_document_labels_per_topic = 5,
2017-11-17 11:46:57 +01:00
ngrams = 1, min_df=1, max_df=0.9,
2017-11-06 12:54:59 +01:00
topicModel='lda'):
n_terms = int(n_topics * top_topic_words)
sort_terms_by = 'seriation' # 'seriation', 'weight', 'index', 'alphabetical'
rank_terms_by = 'corpus' # 'corpus', 'topic'
2017-10-25 09:46:44 +02:00
2017-11-17 11:46:57 +01:00
logprint("#### Topic Modeling {0}".format(topicModel))
2017-10-25 09:46:44 +02:00
logprint(str("ngrams: {0}".format(ngrams)))
logprint(str("min_df: {0}".format(min_df)))
logprint(str("max_df: {0}".format(max_df)))
logprint(str("n_topics: {0}".format(n_topics)))
2017-11-06 12:54:59 +01:00
logprint("\n")
2017-10-10 14:42:09 +02:00
start = time.time()
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
2017-10-30 12:56:52 +01:00
2017-10-10 14:42:09 +02:00
2017-11-17 11:46:57 +01:00
###### vectorize corpi
2017-11-06 12:54:59 +01:00
2017-10-10 14:42:09 +02:00
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
2017-11-06 12:54:59 +01:00
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus)
2017-10-10 14:42:09 +02:00
doc_term_matrix = vectorizer.fit_transform(terms_list)
id2term = vectorizer.__getattribute__("id_to_term")
2017-11-17 11:46:57 +01:00
####### Initialize and train a topic model
2017-11-06 12:54:59 +01:00
2017-10-10 14:42:09 +02:00
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
2017-11-06 12:54:59 +01:00
2017-10-10 14:42:09 +02:00
model.fit(doc_term_matrix)
doc_topic_matrix = model.transform(doc_term_matrix)
2017-11-06 12:54:59 +01:00
2017-11-27 12:49:05 +01:00
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words, weights=True):
logprint('{0}: {1}'.format(topic_idx, str(top_terms)))
2017-10-10 14:42:09 +02:00
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
2017-10-25 09:46:44 +02:00
logprint(topic_idx)
2017-10-10 14:42:09 +02:00
for j in top_docs:
2017-10-25 09:46:44 +02:00
logprint(corpus[j].metadata['categoryName'])
2017-10-10 14:42:09 +02:00
2017-10-30 12:56:52 +01:00
2017-11-06 12:54:59 +01:00
####################### termite plot ###################################################################
grams_label = "uni" if ngrams == 1 else "bi"
2017-11-27 12:49:05 +01:00
draw1.termite_plot(model,doc_term_matrix, vectorizer.id_to_term,
2017-10-30 12:56:52 +01:00
n_terms=n_terms,
sort_terms_by=sort_terms_by,
2017-11-17 11:46:57 +01:00
rank_terms_by=rank_terms_by + '_weight',
2017-10-30 12:56:52 +01:00
2017-11-17 11:46:57 +01:00
save=FILEPATH + "results/{}_{}_{}_{}_{}_{}.png".format(grams_label, topicModel, n_topics,
n_terms, sort_terms_by, rank_terms_by))
2017-10-30 12:56:52 +01:00
2017-10-10 14:42:09 +02:00
end = time.time()
2017-10-25 09:46:44 +02:00
logprint("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start) / 60, topicModel))
2017-10-10 14:42:09 +02:00
2017-12-08 11:06:07 +01:00
2017-11-17 11:46:57 +01:00
def jgibbsLLDA(labeldict,line_gen,path2save_results, top_topic_words=7):
2017-10-10 14:42:09 +02:00
2017-12-08 11:06:07 +01:00
#labeldict = {k : labelist.count(k) for k in labelist}
#max=0
#for v in labeldict.values():
# max = v if v > max else max
#labelist = sort_dictionary(labeldict)
#labeldict.update({'DEFAULT' : max+1})
2017-11-17 11:46:57 +01:00
labeldict_rev = {v: k for k, v in labeldict.items()}
2017-11-06 12:54:59 +01:00
jgibbsLLDA_root = FILEPATH + "java_LabledLDA/"
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
2017-11-17 11:46:57 +01:00
textacy.fileio.write_file_lines(line_gen, filepath=LLDA_filepath)
2017-10-10 14:42:09 +02:00
2017-10-18 17:37:20 +02:00
# wait for file to exist
while not os.path.exists(LLDA_filepath):
time.sleep(1)
2017-11-06 12:54:59 +01:00
# run JGibbsLLDA file
2017-11-17 11:46:57 +01:00
n_topics = len(labeldict) #+1 #default-topic
2017-10-18 17:37:20 +02:00
FNULL = open(os.devnull, 'w') # supress output
2017-10-25 09:46:44 +02:00
cmd_jgibbs_java = ["java", "-cp",
"{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(
jgibbsLLDA_root),
"jgibblda.LDA", "-est", "-dir", "{0}models/tickets".format(jgibbsLLDA_root), "-dfile",
"tickets.gz",
"-twords", str(top_topic_words), "-ntopics", str(n_topics)]
subprocess.call(cmd_jgibbs_java, stdout=FNULL)
2017-10-10 14:42:09 +02:00
2017-10-18 17:37:20 +02:00
2017-11-06 12:54:59 +01:00
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
2017-10-25 09:46:44 +02:00
cmd_gzip = ["gzip", "-dc", "{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)]
2017-11-06 12:54:59 +01:00
output = subprocess.check_output(cmd_gzip).decode("utf-8")
2017-10-25 09:46:44 +02:00
2017-11-06 12:54:59 +01:00
topic_regex = re.compile(r'Topic [0-9]*')
2017-10-25 09:46:44 +02:00
2017-11-06 12:54:59 +01:00
#####################################
# todo save results in file aufgrund von results
2017-10-25 09:46:44 +02:00
result = []
2017-10-18 17:37:20 +02:00
2017-11-06 12:54:59 +01:00
for line in output.splitlines():
findall = topic_regex.findall(line)
2017-10-25 09:46:44 +02:00
if len(findall) != 0:
try:
index = int(findall[0].split()[1])
2017-11-17 11:46:57 +01:00
result.append("Topic {} {}:".format(index, labeldict_rev[index]))
2017-10-25 09:46:44 +02:00
except:
result.append(line)
else:
result.append(line)
2017-11-06 12:54:59 +01:00
textacy.fileio.write_file_lines(result, path2save_results+".txt")
#####################################
2017-11-03 11:49:26 +01:00
2017-11-06 12:54:59 +01:00
results = []
res_dict = {}
count =0
for line in output.splitlines():
findall = topic_regex.findall(line)
if len(findall) != 0:
if len(res_dict) != 0:
results.append(res_dict) #vorheriges an die liste ran (ist ja dann fertig)
index = int(findall[0].split()[1])
2017-11-17 11:46:57 +01:00
res_dict = {index : str(labeldict_rev[index]) }
2017-11-06 12:54:59 +01:00
else:
splitted = line.split()
res_dict[splitted[0]] = float(splitted[1])
if len(res_dict) != 0:
results.append(res_dict) # letzes an die liste ran
# every term in the resulsts to a list
terms=[]
for res in results:
for key,value in res.items():
if not isinstance(key, int) and not key in terms:
terms.append(key)
term2id = {t:i for i,t in enumerate(terms)} #and to dict
################# termite plot #####################################################################
2017-11-17 11:46:57 +01:00
topic_labels = list(range(len(labeldict)))
2017-11-06 12:54:59 +01:00
term_labels = list(range(len(term2id))) #tuple([key for key in term2id.keys()])
2017-11-03 11:49:26 +01:00
2017-11-06 12:54:59 +01:00
term_topic_weights = np.zeros((len(term2id),len(topic_labels)))
for i,res in enumerate(results):
for key,value in res.items():
if not isinstance(key, int):
term_topic_weights[term2id[key]][i] = value
term_labels[term2id[key]] = key
else:
2017-11-17 11:46:57 +01:00
topic_labels[i] = labeldict_rev[key]
2017-11-03 11:49:26 +01:00
2017-11-17 11:46:57 +01:00
draw.draw_termite(
2017-11-06 12:54:59 +01:00
term_topic_weights, topic_labels, term_labels, save=path2save_results+".png")
2017-11-17 11:46:57 +01:00
draw.draw_termite(
term_topic_weights, topic_labels, term_labels, save=path2save_results+"_spaced.png",pow_x=0.78,pow_y=0.87)
# save labeldict
labeldict_path = path2save_results + "_labeldict.json"
with open(labeldict_path, 'w') as file:
file.write(json.dumps(labeldict))
def jgibbsLLDA_category(corpus, path2save_results, top_topic_words=7):
start = time.time()
logprint("")
logprint("start Category-LLDA:")
2017-11-17 11:46:57 +01:00
# build dictionary of ticketcategories
labelist = []
for doc in corpus:
2017-11-27 12:49:05 +01:00
category = normalize(doc.metadata["categoryName"])
labelist.append(category)
2017-12-08 11:06:07 +01:00
# frage nur die x häufigsten labels benutzen, rest raus?
labelist = [l for l in labelist if labelist.count(l) > 50 ]
2017-11-17 11:46:57 +01:00
2017-12-08 11:06:07 +01:00
in_labelist_ = {k: labelist.count(k) for k in labelist}
labelist = sort_dictionary(in_labelist_)
labelist.reverse()
labeldict = {elem[0] : i for i, elem in enumerate(labelist)}
#for elem in labelist:
# l = elem[0]
# c = elem[1]
#labeldict = {elem[0] : len(labelist)-(i+1) for i, elem in enumerate(labelist)}
#labelist = list(set(labelist))
#labeldict = {k: v for v, k in enumerate(labelist)}
labeldict.update({'DEFAULT': len(labelist)})
2017-11-17 11:46:57 +01:00
2017-11-17 11:46:57 +01:00
def gen_cat_lines(textacyCorpus, labeldict):
""" generates [topic1, topic2....] tok1 tok2 tok3 out of corpi"""
for doc in textacyCorpus:
2017-11-27 12:49:05 +01:00
label = labeldict.get(normalize(doc.metadata["categoryName"]), labeldict['DEFAULT'])
2017-12-08 11:06:07 +01:00
if label is not 'DEFAULT':
yield "[ " + str(label) + " ] " + doc.text
2017-11-17 11:46:57 +01:00
line_gen = gen_cat_lines(corpus, labeldict)
path2save_results = path2save_results + "_kb_cat_llda_{}".format("top" + str(top_topic_words))
jgibbsLLDA(labeldict, line_gen, path2save_results, top_topic_words=top_topic_words)
2017-10-25 09:46:44 +02:00
end = time.time()
2017-11-17 11:46:57 +01:00
logprint("\n\n\nTime Elapsed Category-LLDA :{0} min\n\n".format((end - start) / 60))
2017-11-06 12:54:59 +01:00
2017-11-27 12:49:05 +01:00
@deprecated
2017-11-17 11:46:57 +01:00
def jgibbsLLDA_KB(corpus, path2save_results, top_topic_words = 7, kb_keywords=False):
"""ticket_ID -> KB_ID -> keywords / subject -> llda"""
2017-11-06 12:54:59 +01:00
2017-11-17 11:46:57 +01:00
start = time.time()
logprint("")
logprint("start {}-LLDA:".format("Keyword" if kb_keywords else "Subject"))
# ticket2kb_dict
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
ticket2kb_dict = {}
for line in kb2ticket_gen:
ticket_id = line[0]
kb_id = line[1]
ticket2kb_dict[ticket_id] = kb_id
# {'INC55646': 'KBA10065', 'INC65776': 'KBA10040', 'INC43025': 'KBA10056', ...}
kb_entries_used = len(list(set(ticket2kb_dict.values())))
print("kb_entries_used: {}".format(kb_entries_used))
# kb2keywords_dict
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
next(kb2keywords_gen,None) #skip first line("ArticleID";"Subject";"Keywords";...)
kb2keywords_dict = {}
for line in kb2keywords_gen:
kb_id = line[0]
subject = line[1]
keywords = line[2]
keywords_list = [normalize(x) for x in str(keywords).split(",")]
if kb_id not in kb2keywords_dict.keys():
kb2keywords_dict[kb_id] = []
if kb_keywords:
for item in keywords_list:
if item != "":
kb2keywords_dict[kb_id].append(item)
else:
kb2keywords_dict[kb_id].append(subject)
#remove all empty items
kb2keywords_dict = { k : v for k,v in kb2keywords_dict.items() if len(v) != 0}
# {'KBA10091': ['citavi'], 'KBA10249': ['"beschaedigte unicard"', 'risse', '"defekte karte"'], ...}
#keywords2kb_dict
keywords2kb_dict = {}
for kb_id, lst in kb2keywords_dict.items():
for l in lst:
if l not in keywords2kb_dict.keys():
keywords2kb_dict[l] = [kb_id]
else:
keywords2kb_dict[l].append(kb_id)
# {'unicard namensaenderung': ['KBA10276'], 'vpn': ['KBA10063'], 'outlook_exchange': ['KBA10181'], ...}
# Look for actually used keywords
used_keywords = []
for doc in corpus:
ticket_number = doc.metadata["TicketNumber"]
kb_id = ticket2kb_dict.get(ticket_number, None)
keywords = kb2keywords_dict.get(kb_id, None)
2017-11-06 12:54:59 +01:00
2017-11-17 11:46:57 +01:00
if keywords and kb_id:
used_keywords.append(list(map(normalize,keywords)))
2017-11-06 12:54:59 +01:00
2017-11-17 11:46:57 +01:00
labelist = [item for sublist in used_keywords for item in sublist] #flatten list
labelist = list(set(labelist))
print("len(labelist): {}".format(len(labelist)))
2017-11-06 12:54:59 +01:00
2017-10-18 17:37:20 +02:00
2017-10-25 09:46:44 +02:00
2017-11-17 11:46:57 +01:00
labeldict = {k: v for v, k in enumerate(labelist)}
def gen_KB_lines(textacyCorpus, labeldict, ticket2kb_dict, kb2keywords_dict):
for doc in corpus:
ticket_number = doc.metadata["TicketNumber"]
kb_number = ticket2kb_dict.get(ticket_number, None)
keywords = kb2keywords_dict.get(kb_number, None)
if keywords:
label = ""
for kw in keywords:
label = label + str(labeldict.get(normalize(str(kw)), len(labeldict))) + " "
yield "[ " + label + "] " + doc.text
line_gen = gen_KB_lines(corpus, labeldict, ticket2kb_dict, kb2keywords_dict)
path2save_results = path2save_results + "_kb_{}_llda_{}".format("keys" if kb_keywords else "subs",
"top" + str(top_topic_words))
jgibbsLLDA(labeldict, line_gen, path2save_results, top_topic_words=top_topic_words)
end = time.time()
logprint("\n\n\nTime Elapsed {1}-LLDA :{0} min\n\n".format((end - start) / 60,"Keyword" if kb_keywords else "Subject"))
def jgibbsLLDA_KB_v2(corpus, path2save_results, top_topic_words = 7):
start = time.time()
logprint("")
logprint("start LLDA:")
2017-11-27 12:49:05 +01:00
# kb2keywords_dict / kb2subjects_dict --> {str : [str]}
kb2keywords_dict = {}
kb2subjects_dict = {}
kb_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
next(kb_gen, None) # skip first line "ArticleID";"Subject";"Keywords";...
for line in kb_gen:
kb_id = line[0]
subject = normalize(line[1])
keywords = [normalize(x) for x in str(line[2]).split(",")]
if kb_id not in kb2keywords_dict.keys():
kb2keywords_dict[kb_id] = keywords if keywords != [''] else ["DEFAULT"]
else:
kb2keywords_dict[kb_id] = kb2keywords_dict[kb_id] + keywords
if kb_id not in kb2subjects_dict.keys():
kb2subjects_dict[kb_id] = [normalize(subject) if subject != [''] else "DEFAULT"]
else:
kb2subjects_dict[kb_id].append(normalize(subject))
2017-11-27 12:49:05 +01:00
# ticket2kbs_dict --> {str : [str]}
ticket2kbs_dict = {}
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
next(kb2ticket_gen, None) # skip first line"TicketNumber";"ArticleID"
for line in kb2ticket_gen:
ticket_id = line[0]
kb_id = line[1]
if ticket_id not in ticket2kbs_dict.keys():
ticket2kbs_dict[ticket_id] = [kb_id]
else:
ticket2kbs_dict[ticket_id].append(kb_id)
2017-11-27 12:49:05 +01:00
# ticket2keywords --> {str:[str]}
ticket2keywords_dict = {}
for ticket_id, kb_ids in ticket2kbs_dict.items():
if ticket_id not in ticket2keywords_dict.keys():
ticket2keywords_dict[ticket_id] = []
for kb_id in kb_ids:
ticket2keywords_dict[ticket_id].append(kb2keywords_dict[kb_id])
ticket2keywords_dict[ticket_id] = flatten(ticket2keywords_dict[ticket_id])
2017-11-27 12:49:05 +01:00
# ticket2subjects --> {str:[str]}
ticket2subjects_dict = {}
for ticket_id, kb_ids in ticket2kbs_dict.items():
if ticket_id not in ticket2subjects_dict.keys():
ticket2subjects_dict[ticket_id] = []
for kb_id in kb_ids:
ticket2subjects_dict[ticket_id].append(kb2subjects_dict[kb_id])
ticket2subjects_dict[ticket_id] = flatten(ticket2subjects_dict[ticket_id])
# kb2keywords_dict {'KBA10230': ['DEFAULT'], 'KBA10129': ['DEFAULT'], 'KBA10287': ['sd_ansys_informationen'], } len = 260
2017-11-27 12:49:05 +01:00
# kb2subjects_dict {'KBA10230': ['unicard nochmal beantragen'], 'KBA10129': ['sd_entsperrung unicard nach verlust/wiederfinden'], } len = 260
# ticket2kbs_dict {'INC44526': ['KBA10056'], 'INC67205': ['KBA10056'], } len = 4832
# ticket2keywords_dict {'INC44526': ['DEFAULT'], 'INC67205': ['DEFAULT'], 'INC71863': ['DEFAULT'], 'INC44392': ['asknet'] } len=4832
2017-11-27 12:49:05 +01:00
# ticket2subjects_dict {'INC44526': ['sd_telefon (antrag: neuanschluss, umzug, aenderung erledigt)'], len=4832
count_dict = {}
for v in ticket2kbs_dict.values():
for kb in v:
if kb in count_dict.keys():
count_dict[kb] +=1
else:
count_dict[kb] = 1
sorted_dict = sorted(count_dict.items(), key=operator.itemgetter(1))
"""
2017-11-27 12:49:05 +01:00
for k,v in sorted_dict:
subs = kb2subjects_dict[k]
keys = kb2keywords_dict[k]
print(subs, keys , v) # frage wieviele tickets pro topic?
2017-11-27 12:49:05 +01:00
print("kb_entrys used: {}".format(len(sorted_dict))) # frage wie viele kb_entry's insg genutzt?: 155
"""
labelist = ticket2keywords_dict.values()
labelist = flatten(labelist)
labelist = list(set(labelist))
labeldict = {k: v for v, k in enumerate(labelist)}
def gen_key_lines(textacyCorpus, labeldict, ticket2keywords_dict):
for doc in corpus:
ticket_number = doc.metadata["TicketNumber"]
keywords = ticket2keywords_dict.get(ticket_number, ['DEFAULT'])
if keywords != ['DEFAULT']:
label = ""
for kw in keywords:
label = label + str(labeldict.get(normalize(str(kw)), labeldict['DEFAULT'])) + " "
yield "[ " + label + "] " + doc.text
2017-11-27 12:49:05 +01:00
keys_line_gen = gen_key_lines(corpus, labeldict, ticket2keywords_dict)
path2save_keys_results = path2save_results + "_kb_keys_llda_{}".format("top" + str(top_topic_words))
jgibbsLLDA(labeldict, keys_line_gen, path2save_keys_results, top_topic_words=top_topic_words)
labelist = ticket2subjects_dict.values()
labelist = flatten(labelist)
labelist = list(set(labelist))
labeldict = {k: v for v, k in enumerate(labelist)}
2017-11-27 12:49:05 +01:00
labeldict.update({'DEFAULT' : len(labeldict)})
subj_line_gen = gen_key_lines(corpus, labeldict, ticket2subjects_dict)
path2save_subj_results = path2save_results + "_kb_subj_llda_{}".format("top" + str(top_topic_words))
jgibbsLLDA(labeldict, subj_line_gen, path2save_subj_results, top_topic_words=top_topic_words)
end = time.time()
logprint("\n\n\nTime Elapsed LLDA :{0} min\n\n".format((end - start) / 60))
2017-12-08 11:06:07 +01:00
def load_from_labled_lines(path):
path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpi/pre_labled_lines_wo_lemma_061217.txt"
#idee plan
# clean laden, pre laden
# unigramme und num/wort-bigramme doc-term # frage wie geht llda mit bigrammen um? idee bigramme mit _ verbinden
2017-12-08 11:06:07 +01:00
# nimm nur ngrams wo midn. ein token in pre vorkommt
2017-12-08 11:06:07 +01:00
def main(cleaned_corpus, pre_corpus, algorithm="llda"):
2017-10-25 09:46:44 +02:00
logprint("Topic Modeling: {0}".format(datetime.now()))
2017-12-08 11:06:07 +01:00
#todo von labled_lines laden ??
#idee thesaurus vor id2term
#todo akronyme & abk. drin lassen
#todo bigramme nicht auf pre, sondern auf cleaned
#todo zahlen drin lassen, bigramme: NUM wort kombis
#todo levenstein/hamming distanz statt autokorrekt #idee oder word2vec
#todo ticket-subj mit einbeziehen
2017-11-06 12:54:59 +01:00
2017-11-27 12:49:05 +01:00
resultspath = FILEPATH + "results/pre"
2017-10-18 17:37:20 +02:00
2017-12-08 11:06:07 +01:00
de_corpus = pre_corpus
2017-11-06 12:54:59 +01:00
2017-10-18 17:37:20 +02:00
2017-11-17 11:46:57 +01:00
if algorithm == "llda":
2017-10-25 09:46:44 +02:00
2017-12-08 11:06:07 +01:00
top_topic_words = 3
2017-11-17 11:46:57 +01:00
jgibbsLLDA_category(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
2017-10-18 17:37:20 +02:00
jgibbsLLDA_KB_v2(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
2017-10-25 09:46:44 +02:00
2017-11-27 12:49:05 +01:00
"""
2017-11-17 11:46:57 +01:00
kb_keywords = False
2017-11-27 12:49:05 +01:00
jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
2017-11-17 11:46:57 +01:00
kb_keywords = True
2017-11-27 12:49:05 +01:00
jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
2017-10-18 17:37:20 +02:00
2017-11-27 12:49:05 +01:00
2017-10-30 12:56:52 +01:00
top_topic_words = 10
2017-11-06 12:54:59 +01:00
path2save_results = resultspath + "_{}_{}".format(algorithm,"top"+str(top_topic_words))
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
2017-10-18 17:37:20 +02:00
2017-11-06 12:54:59 +01:00
top_topic_words = 15
path2save_results = resultspath + "_{}_{}".format(algorithm, "top" + str(top_topic_words))
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
2017-10-18 17:37:20 +02:00
2017-11-06 12:54:59 +01:00
top_topic_words = 20
path2save_results = resultspath + "_{}_{}".format(algorithm, "top" + str(top_topic_words))
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
2017-10-18 17:37:20 +02:00
2017-11-06 12:54:59 +01:00
"""
2017-10-30 12:56:52 +01:00
else:
2017-10-25 09:46:44 +02:00
2017-10-30 12:56:52 +01:00
textacyTopicModeling(ngrams = 1,
topicModel = algorithm,
2017-11-03 11:49:26 +01:00
corpus=de_corpus)
2017-11-06 12:54:59 +01:00
"""
2017-11-03 11:49:26 +01:00
textacyTopicModeling(ngrams=1,
min_df=1,
max_df=0.9,
topicModel=algorithm,
n_topics=20,
corpus=de_corpus)
2017-11-17 11:46:57 +01:00
2017-11-03 11:49:26 +01:00
textacyTopicModeling(ngrams=1,
min_df=1,
max_df=0.9,
topicModel=algorithm,
n_topics=25,
2017-10-30 12:56:52 +01:00
corpus=de_corpus)
2017-11-03 11:49:26 +01:00
textacyTopicModeling(ngrams=1,
min_df=1,
max_df=0.9,
topicModel=algorithm,
n_topics=30,
corpus=de_corpus)
2017-11-06 12:54:59 +01:00
"""
2017-11-03 11:49:26 +01:00
textacyTopicModeling(ngrams=(1, 2),
topicModel=algorithm,
corpus=de_corpus)
2017-11-06 12:54:59 +01:00
"""
2017-11-03 11:49:26 +01:00
textacyTopicModeling(ngrams = (1,2),
min_df = 1,
max_df = 0.9,
topicModel = algorithm,
n_topics =20,
corpus=de_corpus)
2017-11-17 11:46:57 +01:00
2017-11-03 11:49:26 +01:00
textacyTopicModeling(ngrams = (1,2),
min_df = 1,
max_df = 0.9,
topicModel = algorithm,
n_topics =25,
corpus=de_corpus)
textacyTopicModeling(ngrams = (1,2),
min_df = 1,
max_df = 0.9,
topicModel = algorithm,
n_topics =30,
corpus=de_corpus)
2017-10-30 12:56:52 +01:00
"""
2017-10-25 09:46:44 +02:00
2017-10-18 17:37:20 +02:00
if __name__ == "__main__":
2017-12-08 11:06:07 +01:00
# load corpus
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
pre_corpus_name = "de" + "_pre"
pre_corpus, parser = load_corpus(corpus_name=pre_corpus_name, corpus_path=corpus_de_path)
logprint("Corpus loaded: {0}".format(pre_corpus_name))
cleaned_corpus_name = "de" + "_raw"
#cleaned_corpus, parser = load_corpus(corpus_name=cleaned_corpus_name, corpus_path=corpus_de_path)
logprint("Corpus loaded: {0}".format(cleaned_corpus_name))
cleaned_corpus = None
main(pre_corpus=pre_corpus,cleaned_corpus=cleaned_corpus,algorithm="llda")
main(pre_corpus=pre_corpus,cleaned_corpus=cleaned_corpus,algorithm="lda")
2017-10-10 14:42:09 +02:00