topicModelingTickets/test.py

166 lines
4.7 KiB
Python
Raw Normal View History

2017-08-29 15:01:17 +02:00
# -*- coding: utf-8 -*-
import re
import spacy
import textacy
2017-08-30 12:56:59 +02:00
import xml.etree.ElementTree as ET
2017-08-29 15:01:17 +02:00
DATAPATH_thesaurus = "openthesaurus.csv"
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
PARSER = spacy.load('de')
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
"""
https://spacy.io/docs/usage/pos-tagging
cleans text from PUNCT, NUM, whitespaces, newlines, and the following list of symbols:
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
["-----","---","...","","",".","-","<",">",",","?","!","..","nt","n't","|","||",";",":","","s","'s",".","(",")","[","]","#"]
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
"""
if custom_symbols is not None:
custom_symbols = custom_symbols
else:
custom_symbols = []
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
if keep is not None:
keep = keep
else:
keep = []
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# List of symbols we don't care about
symbols = ["-----","---","...","","",".","-","<",">",",","?","!","..","nt","n't","|","||",";",":","","s","'s",".","(",")","[","]","#"] + custom_symbols
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# parse with spaCy
spacy_doc = parser(string)
tokens = []
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
pos = ["NUM", "SPACE", "PUNCT"]
for p in keep:
pos.remove(p)
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# append Tokens to a list
for tok in spacy_doc:
if tok.pos_ not in pos:
tokens.append(tok.text.lower().strip())
2017-08-30 12:56:59 +02:00
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# remove symbols
tokens = [tok for tok in tokens if tok not in symbols]
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# remove whitespace
remove_whitespace(" ".join(tokens))
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
return " ".join(tokens)
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
def cleanText_words(string, parser=PARSER, custom_stopwords=None, custom_words=None, customPreprocessing=cleanText_symbols, lemmatize=False, normalize_synonyms=False):
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# use preprocessing
if customPreprocessing is not None:
string = customPreprocessing(string)
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
if custom_stopwords is not None:
custom_stopwords = custom_stopwords
else:
custom_stopwords = []
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
if custom_words is not None:
custom_words = custom_words
else:
custom_words = []
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# custom stoplist
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
stop_words = __import__("spacy." + parser.lang, globals(), locals(), ['object']).STOP_WORDS
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
stoplist =list(stop_words) + custom_stopwords
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
# replace twitter
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
string = mentionFinder.sub("MENTION", string)
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# replace emails
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
string = emailFinder.sub("EMAIL", string)
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# replace urls
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
string = urlFinder.sub("URL", string)
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# replace HTML symbols
string = string.replace("&amp;", "and").replace("&gt;", ">").replace("&lt;", "<")
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# parse with spaCy
spacy_doc = parser(string)
tokens = []
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
# append Tokens to a list
for tok in spacy_doc:
if tok.pos_ in added_POS:
if lemmatize:
tokens.append(tok.lemma_.lower().strip())
else:
tokens.append(tok.text.lower().strip())
# add entities
if tok.ent_type_ in added_entities:
tokens.append(tok.text.lower())
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# remove stopwords
tokens = [tok for tok in tokens if tok not in stoplist]
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# remove custom_words
tokens = [tok for tok in tokens if tok not in custom_words]
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# remove single characters
tokens = [tok for tok in tokens if len(tok)>1]
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
# remove large strings of whitespace
#remove_whitespace(" ".join(tokens))
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
#if normalize_synonyms:
# tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
return " ".join(tokens)
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
def remove_whitespace(sentence):
whitespaceFinder = re.compile(r'(\r\n|\r|\n|\s)', re.IGNORECASE)
sentence = whitespaceFinder.sub(" ", sentence)
return sentence
2017-08-30 12:56:59 +02:00
2017-08-31 14:54:01 +02:00
def cleanText_normalize(string, parser=PARSER, customPreprocessing=cleanText_words, lemmatize=True):
# use preprocessing
if customPreprocessing is not None:
string = customPreprocessing(string)
2017-08-30 12:56:59 +02:00
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
string = "Frau Hinrichs überdenkt die Situation und 545453 macht dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
print(cleanText_symbols(string=string, parser=PARSER, keep=["NUM"]))
2017-08-29 15:01:17 +02:00
2017-08-31 14:54:01 +02:00
string = "Frau Hinrichs überdenkt die Situation und 545453 macht dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
print(cleanText_symbols(string=string, parser=PARSER, keep=None))