topicModelingTickets/test.py

214 lines
6.5 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
import spacy
import textacy
from spacy.tokens import Doc
# -*- coding: utf-8 -*-
import re
import spacy
import functools
import textacy
class TextCleaner:
def __init__(self, parser, thesaurus=None, customClass_symbols=None, customClass_words=None, keep4All=None):
"""
:param parser: spacy-parser
:param thesaurus: [[syn1, syn2, ...],[syn1, syn2, ...], ...]
:param customClass_symbols:[str]
:param customClass_words:[str]
:param customClassPOS:[str]
:param keep4All: [str]
"""
if thesaurus is None:
DATAPATH_thesaurus = "openthesaurus.csv"
## !!!!!! list wichtig, da sonst nicht die gleichen Synonyme zurückgegeben werden, weil ein generator während der laufzeit pickt
self.thesaurus = list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";"))
else:
self.thesaurus = thesaurus
self.parser = parser
#self.whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
self.mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
self.emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
self.urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
# to keep
self.entities2keep = ["WORK_OF_ART", "ORG", "PRODUCT", "LOC"] # ,"PERSON"]
self.pos2keep = ["NOUN"] # , "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
"""
# to remove
self.symbols = ["-----", "---", "...", "", "", ".", "-", "<", ">", ",", "?", "!", "..", "nt", "n't", "|", "||",
";", ":",
"", "s", "'s", ".", "(", ")", "[", "]", "#"] + (customClass_symbols if customClass_symbols is not None else [])
self.stop_words = list(__import__("spacy." + self.parser.lang, globals(), locals(), ['object']).STOP_WORDS)+ (customClass_words if customClass_words is not None else [])
self.entities2keep = self.entities2keep + (keep4All if keep4All is not None else [])
self.pos2keep = self.pos2keep + (keep4All if keep4All is not None else [])
keep = (keep4All if hasattr(keep4All, '__iter__') else []) + self.pos2keep + self.entities2keep
# modify those to remove with those to keep
for sym in keep:
try:
self.symbols.remove(sym)
except ValueError:
pass
for sym in keep:
try:
self.stop_words.remove(sym)
except ValueError:
pass
"""
def loadString(self,string):
self.currentDoc = self.parser(string)
def removeWhitespace(self, string):
return " ".join([tok.text for tok in self.currentDoc if not tok.is_space])
def removePunctuation(self, string, custom_symbols=None, keep=None):
symbols = self.symbols + (custom_symbols if custom_symbols is not None else [])
if hasattr(keep, '__iter__'):
for k in keep:
try:
symbols.remove(k)
except ValueError:
pass
return " ".join([tok.text for tok in self.currentDoc if not tok.is_punct and tok.text not in symbols])
def cleanDoc(doc, toDelete=None, toKeep=None):
"""
:param doc: spacyDoc
:param toDelete: [str] pos_ , ent_type_ or tag_
:return: str tokenlist
"""
#keep
tokenlist = []
for tok in doc:
if tok.pos_ in toKeep or tok.ent_type_ in toKeep or tok.tag_ in toKeep:
tokenlist.append(tok.text)
#delete
tokenlist = [tok.text for tok in doc if tok.pos_ in toDelete and not tok.ent_type_ in toDelete and not tok.tag_ in toDelete]
result = " ".join(tokenlist)
return result #problem: kein doc und daher nicht komponierbar
def keepinDoc(doc, toKeep=None):
"""
:param doc: spacyDoc
:param toDelete: [str]
:return: str tokenlist
"""
return " ".join([tok.text for tok in doc if tok.pos_ in toKeep or tok.ent_type_ in toKeep or tok.tag_ in toKeep])
#todo https://mathieularose.com/function-composition-in-python/
parser = spacy.load('de')
cleaner = TextCleaner(parser)
corpus_raw = textacy.Corpus(parser)
corpus_clean = textacy.Corpus(parser)
def foo(doc, toKeep=None):
words = [tok.text for tok in doc if tok.pos_ in toKeep or tok.ent_type_ in toKeep or tok.tag_ in toKeep]
spaces = [True] * len(words)
return Doc(doc.vocab,words=words,spaces=spaces)
def foo2(doc, toDelete=None):#, toKeep=None):
"""
:param doc: spacyDoc
:param toDelete: [str] pos_ , ent_type_ or tag_
:return: str tokenlist
"""
#keep
#tokenlist = [tok.text for tok in doc if tok.pos_ in toKeep or tok.ent_type_ in toKeep or tok.tag_ in toKeep]
#delete
words = [tok.text for tok in doc if tok.pos_ in toDelete and not tok.ent_type_ in toDelete and not tok.tag_ in toDelete]
spaces = [True] * len(words)
return Doc(doc.vocab, words=words, spaces=spaces)
"""
def compose(self,*functions):
return functools.reduce(lambda f, g: lambda x: f(g(x)), functions, lambda x: x)
def composeo(*functions):
return functools.reduce(lambda f, g: lambda x: f(g(x)), functions)
"""
def double(a):
return a*2
def add(a, b):
return a+b
def compose(*functions):
def compose2(f, g):
return lambda x: f(g(x))
return functools.reduce(compose2, functions, lambda x: x)
#pipeline = compose(removeFromDoc, cleaner.removeWhitespace, cleaner.loadString)
"""
def pipe1(string):
cleaner.loadString(string)
string = cleaner.removeWhitespace(string)
string = cleaner.removePunctuation(string)
return string
"""
def cleaningPipe(spacy_pipe, composition):
for doc in spacy_pipe:
yield composition(doc)
pipeline = compose(
functools.partial(foo2, toDelete=["PUNCT", "SPACE"]),
functools.partial(foo, toKeep=["NOUN"]))
string = "Frau Hinrichs überdenkt die tu Situation und 545453 macht ' dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
doc = parser(string)
#print(removeFromDoc(doc,toDelete=["PUNCT"]))
print(pipeline(doc.text))
for txt in cleaningPipe(parser.pipe([string]),pipeline):
print(txt)
"""
corpus_raw.add_text(string)
for doc in parser.pipe([string]):
doc.text = removeFromDoc(doc, toDelete=["PUNCT"])
"""
#corpus_clean.add_texts(cleaningPipe(parser.pipe([string]),pipeline))
#print(corpus_raw[0].text)