textcleaning refactored

This commit is contained in:
jannis.grundmann 2017-09-01 14:27:03 +02:00
parent 86ee5d7fba
commit 11e77fad06
3 changed files with 267 additions and 204 deletions

View File

@ -190,73 +190,57 @@ def generateFromXML(path2xml, textfield='Beschreibung', clean=False, normalize_
LANGUAGE = 'de'
#PARSER = de_core_news_md.load()
PARSER = spacy.load(LANGUAGE)
from textCleaning import TextCleaner
cleaner = TextCleaner(parser=PARSER)
def generateTextfromXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False,lemmatize=False):
def generateTextfromTicketXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False, lemmatize=False):
import xml.etree.ElementTree as ET
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
"""
for subject in root.iter(textfield):
if clean:
yield cleanText(subject.text)
else:
yield subject.text
"""
for ticket in root:
text = "ERROR"
for field in ticket:
if field.tag == textfield:
if clean:
text = cleanText_words(field.text,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
text = cleaner.normalizeSynonyms(cleaner.removeWords(cleaner.keepPOSandENT(field.text))) #,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
else:
text = field.text
yield text
def generateMetadatafromXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
def generateMetadatafromTicketXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
import xml.etree.ElementTree as ET
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
"""
metadata = dict.fromkeys(keys)
for ticket in root.findall('ticket'):
for key in metadata:
metadata[key] = ticket.find(key).text
yield metadata
"""
for ticket in root:
metadata = {}
for field in ticket:
if field.tag != textfield:
if field.tag == "Zusammenfassung":
# idee lösung nur whitespace entfernen, zusammenfassung auch von symbolen befreien
metadata[field.tag] = cleanText_symbols(field.text)
metadata[field.tag] = cleaner.removePunctuation(field.text)
elif field.tag == "Loesung":
metadata[field.tag] = remove_whitespace(field.text)
metadata[field.tag] = cleaner.removeWhitespace(field.text)
else:
metadata[field.tag] = field.text
yield metadata
"""
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
"""
https://spacy.io/docs/usage/pos-tagging
cleans text from PUNCT, NUM, whitespaces, newlines, and the following list of symbols:
["-----","---","...","","",".","-","<",">",",","?","!","..","nt","n't","|","||",";",":","","s","'s",".","(",")","[","]","#"]
"""
if custom_symbols is not None:
custom_symbols = custom_symbols
else:
@ -360,18 +344,21 @@ def cleanText_words(string,parser=PARSER, custom_stopwords=None, custom_words=No
#remove_whitespace(" ".join(tokens))
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
#idee abkürzungen auflösen (v.a. TU -> Technische Universität): abkürzungsverezeichnis
if normalize_synonyms:
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
return " ".join(set(tokens))
def remove_whitespace(sentence):
def cleanText_removeWhitespace(sentence):
whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
sentence = whitespaceFinder.sub(" ", sentence)
return sentence
#todo: preprocess pipe: removewhitespace, removePUNCT, resolveAbk, keepPOS, keepEnt, removeWords, normalizeSynonyms
def getFirstSynonym(word, thesaurus_gen):
word = word.lower()
@ -407,7 +394,7 @@ def getHauptform(syn_block, word, default_return_first_Syn=False):
if not re.match(r'\([^)]+\)', w):
return w
return word # zur Not, das ursrpüngliche Wort zurückgeben
"""
def printRandomDoc(textacyCorpus):
print()
@ -434,18 +421,14 @@ custom_words = ["grüßen", "fragen"]
####################'####################'####################'####################'####################'##############
#PARSER = de_core_news_md.load()
THESAURUS_list=list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";")) ## !!!!!! list wichtig, da sonst nicht die gleichen Synonyme zurückgegeben werden, weil der generator während der laufzeit pickt
#todo joar diese pipe halt und vllt ne config-file
## files to textacy-corpus
textacyCorpus = textacy.Corpus(PARSER)
print("add texts to textacy-corpus...")
textacyCorpus.add_texts(texts=generateTextfromXML(DATAPATH,normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromXML(DATAPATH))
textacyCorpus.add_texts(texts=generateTextfromTicketXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromTicketXML(DATAPATH))
#for txt, dic in generateFromXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize):

165
test.py
View File

@ -1,165 +0,0 @@
# -*- coding: utf-8 -*-
import re
import spacy
import textacy
import xml.etree.ElementTree as ET
DATAPATH_thesaurus = "openthesaurus.csv"
PARSER = spacy.load('de')
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
"""
https://spacy.io/docs/usage/pos-tagging
cleans text from PUNCT, NUM, whitespaces, newlines, and the following list of symbols:
["-----","---","...","","",".","-","<",">",",","?","!","..","nt","n't","|","||",";",":","","s","'s",".","(",")","[","]","#"]
"""
if custom_symbols is not None:
custom_symbols = custom_symbols
else:
custom_symbols = []
if keep is not None:
keep = keep
else:
keep = []
# List of symbols we don't care about
symbols = ["-----","---","...","","",".","-","<",">",",","?","!","..","nt","n't","|","||",";",":","","s","'s",".","(",")","[","]","#"] + custom_symbols
# parse with spaCy
spacy_doc = parser(string)
tokens = []
pos = ["NUM", "SPACE", "PUNCT"]
for p in keep:
pos.remove(p)
# append Tokens to a list
for tok in spacy_doc:
if tok.pos_ not in pos:
tokens.append(tok.text.lower().strip())
# remove symbols
tokens = [tok for tok in tokens if tok not in symbols]
# remove whitespace
remove_whitespace(" ".join(tokens))
return " ".join(tokens)
def cleanText_words(string, parser=PARSER, custom_stopwords=None, custom_words=None, customPreprocessing=cleanText_symbols, lemmatize=False, normalize_synonyms=False):
# use preprocessing
if customPreprocessing is not None:
string = customPreprocessing(string)
if custom_stopwords is not None:
custom_stopwords = custom_stopwords
else:
custom_stopwords = []
if custom_words is not None:
custom_words = custom_words
else:
custom_words = []
# custom stoplist
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
stop_words = __import__("spacy." + parser.lang, globals(), locals(), ['object']).STOP_WORDS
stoplist =list(stop_words) + custom_stopwords
# replace twitter
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
string = mentionFinder.sub("MENTION", string)
# replace emails
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
string = emailFinder.sub("EMAIL", string)
# replace urls
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
string = urlFinder.sub("URL", string)
# replace HTML symbols
string = string.replace("&amp;", "and").replace("&gt;", ">").replace("&lt;", "<")
# parse with spaCy
spacy_doc = parser(string)
tokens = []
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
# append Tokens to a list
for tok in spacy_doc:
if tok.pos_ in added_POS:
if lemmatize:
tokens.append(tok.lemma_.lower().strip())
else:
tokens.append(tok.text.lower().strip())
# add entities
if tok.ent_type_ in added_entities:
tokens.append(tok.text.lower())
# remove stopwords
tokens = [tok for tok in tokens if tok not in stoplist]
# remove custom_words
tokens = [tok for tok in tokens if tok not in custom_words]
# remove single characters
tokens = [tok for tok in tokens if len(tok)>1]
# remove large strings of whitespace
#remove_whitespace(" ".join(tokens))
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
#if normalize_synonyms:
# tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
return " ".join(tokens)
def remove_whitespace(sentence):
whitespaceFinder = re.compile(r'(\r\n|\r|\n|\s)', re.IGNORECASE)
sentence = whitespaceFinder.sub(" ", sentence)
return sentence
def cleanText_normalize(string, parser=PARSER, customPreprocessing=cleanText_words, lemmatize=True):
# use preprocessing
if customPreprocessing is not None:
string = customPreprocessing(string)
string = "Frau Hinrichs überdenkt die Situation und 545453 macht dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
print(cleanText_symbols(string=string, parser=PARSER, keep=["NUM"]))
string = "Frau Hinrichs überdenkt die Situation und 545453 macht dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
print(cleanText_symbols(string=string, parser=PARSER, keep=None))

245
textCleaning.py Normal file
View File

@ -0,0 +1,245 @@
# -*- coding: utf-8 -*-
import re
import spacy
import functools
import textacy
class TextCleaner:
def __init__(self, parser, thesaurus=None, customClass_symbols=None, customClass_words=None, keep4Class=None):
"""
:param parser: spacy-parser
:param thesaurus: [[syn1, syn2, ...],[syn1, syn2, ...], ...]
:param customClass_symbols:[str]
:param customClass_words:[str]
:param customClassPOS:[str]
:param keep4Class: [str]
"""
if thesaurus is None:
DATAPATH_thesaurus = "openthesaurus.csv"
## !!!!!! list wichtig, da sonst nicht die gleichen Synonyme zurückgegeben werden, weil ein generator während der laufzeit pickt
self.thesaurus = list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";"))
else:
self.thesaurus = thesaurus
self.parser = parser
self.whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
self.mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
self.emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
self.urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
# to remove
self.symbols = ["-----", "---", "...", "", "", ".", "-", "<", ">", ",", "?", "!", "..", "nt", "n't", "|", "||",
";", ":",
"", "s", "'s", ".", "(", ")", "[", "]", "#"] + (customClass_symbols if customClass_symbols is not None else [])
self.stop_words = list(__import__("spacy." + self.parser.lang, globals(), locals(), ['object']).STOP_WORDS)+ (customClass_words if customClass_words is not None else [])
# to keep
self.entities2keep = ["WORK_OF_ART", "ORG", "PRODUCT", "LOC"] # ,"PERSON"]
self.pos2keep = ["NOUN"] # , "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
self.entities2keep = self.entities2keep + (keep4Class if keep4Class is not None else [])
self.pos2keep = self.pos2keep + (keep4Class if keep4Class is not None else [])
keep = (keep4Class if hasattr(keep4Class, '__iter__') else []) + self.pos2keep + self.entities2keep
# modify those to remove with those to keep
for sym in keep:
try:
self.symbols.remove(sym)
except ValueError:
try:
self.stop_words.remove(sym)
except ValueError:
pass
# idee self.currentDoc = spacy.Doc für jeden String aber nicht füpr jede methode
def removeWhitespace(self, string):
string = self.whitespaceFinder.sub(" ", string)
return string
def removePunctuation(self, string, custom_symbols=None, keep=None):
symbols = self.symbols + (custom_symbols if custom_symbols is not None else [])
if hasattr(keep, '__iter__'):
for k in keep:
try:
symbols.remove(k)
except ValueError:
pass
# parse with spaCy
doc = self.parser(string)
tokens = []
# append Tokens to a list
for tok in doc:
if not tok.is_punct and not tok.is_space and tok.text not in symbols:
tokens.append(tok.text)
return " ".join(tokens)
def resolveAbbreviations(self,string):
return string #todo
def keepPOSandENT(self, string, customPOS=None, customEnt=None, remove=None):
pos2keep = self.pos2keep + (customPOS if customPOS is not None else [])
ent = self.entities2keep + (customEnt if customEnt is not None else [])
if hasattr(remove, '__iter__'):
for k in remove:
try:
ent.remove(k)
except ValueError:
try:
pos2keep.remove(k)
except ValueError:
pass
# parse with spaCy
spacy_doc = self.parser(string)
tokens = []
# append Tokens to a list
for tok in spacy_doc:
if tok.pos_ in pos2keep:
tokens.append(tok.text)
if tok.ent_type_ in ent:
tokens.append(tok.text)
return " ".join(set(tokens))
def removeWords(self,string, custom_words=None, keep=None, lemmatize=False):
wordlist = self.stop_words + (custom_words if custom_words is not None else [])
if hasattr(keep, '__iter__'):
for k in keep:
try:
wordlist.remove(k)
except ValueError:
pass
string = self.urlFinder.sub("URL", string)
string = self.emailFinder.sub("EMAIL", string)
string = self.mentionFinder.sub("MENTION", string)
string = string.replace("&amp;", "and").replace("&gt;", ">").replace("&lt;", "<")
# parse with spaCy
spacy_doc = self.parser(string)
tokens = []
# append Tokens to a list
for tok in spacy_doc:
#do not include stopwords/customwords and single chars
if tok.text not in wordlist and len(tok)>1:
if lemmatize:
tokens.append(tok.lemma_)
else:
tokens.append(tok.lower_)
return " ".join(set(tokens))
def normalizeSynonyms(self, string, default_return_first_Syn=False):
# parse with spaCy
spacy_doc = self.parser(string)
tokens = []
tokens = [str(self.getFirstSynonym(tok, self.thesaurus, default_return_first_Syn=default_return_first_Syn)) for tok in spacy_doc]
return " ".join(set(tokens))
def getFirstSynonym(self,word, thesaurus, default_return_first_Syn=False):
if not isinstance(word, str):
return word
word = word.lower()
# durch den thesaurrus iterieren
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
for syn in syn_block:
syn = syn.lower()
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
if word == syn:
return self.getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)
else: # falls es ein satz ist
if word in syn:
return self.getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)
return word # zur Not, das ursrpüngliche Wort zurückgeben
def getHauptform(self,syn_block, word, default_return_first_Syn=False):
for syn in syn_block:
syn = syn.lower()
if "hauptform" in syn and len(syn.split(" ")) <= 2:
# nicht ausgeben, falls es in Klammern steht
for w in syn.split(" "):
if not re.match(r'\([^)]+\)', w):
return w
if default_return_first_Syn:
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
for w in syn_block:
if not re.match(r'\([^)]+\)', w):
return w
return word # zur Not, das ursrpüngliche Wort zurückgeben
cleaner = TextCleaner(parser=spacy.load('de'))
string = "Frau Hinrichs überdenkt die tu Situation und 545453 macht ' dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
#################################################################################################################
#todo funzt irgendwie nich wie's soll: https://mathieularose.com/function-composition-in-python/
def compose(self,*functions):
return functools.reduce(lambda f, g: lambda x: f(g(x)), functions, lambda x: x)
pipeline = compose(functools.partial(cleaner.keepPOSandENT,lemmatize=True))#, cleaner.normalizeSynonyms)
#################################################################################################################
print(cleaner.removePunctuation(string))
print(cleaner.keepPOSandENT(string))