textcleaning refactored
This commit is contained in:
parent
86ee5d7fba
commit
11e77fad06
|
@ -190,73 +190,57 @@ def generateFromXML(path2xml, textfield='Beschreibung', clean=False, normalize_
|
|||
|
||||
|
||||
LANGUAGE = 'de'
|
||||
#PARSER = de_core_news_md.load()
|
||||
PARSER = spacy.load(LANGUAGE)
|
||||
|
||||
from textCleaning import TextCleaner
|
||||
|
||||
cleaner = TextCleaner(parser=PARSER)
|
||||
|
||||
|
||||
def generateTextfromXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False,lemmatize=False):
|
||||
def generateTextfromTicketXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False, lemmatize=False):
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||
|
||||
root = tree.getroot()
|
||||
"""
|
||||
for subject in root.iter(textfield):
|
||||
if clean:
|
||||
yield cleanText(subject.text)
|
||||
else:
|
||||
yield subject.text
|
||||
"""
|
||||
|
||||
|
||||
for ticket in root:
|
||||
text = "ERROR"
|
||||
for field in ticket:
|
||||
if field.tag == textfield:
|
||||
if clean:
|
||||
text = cleanText_words(field.text,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
||||
text = cleaner.normalizeSynonyms(cleaner.removeWords(cleaner.keepPOSandENT(field.text))) #,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
||||
else:
|
||||
text = field.text
|
||||
yield text
|
||||
|
||||
def generateMetadatafromXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
|
||||
def generateMetadatafromTicketXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||
|
||||
root = tree.getroot()
|
||||
|
||||
"""
|
||||
metadata = dict.fromkeys(keys)
|
||||
|
||||
for ticket in root.findall('ticket'):
|
||||
for key in metadata:
|
||||
metadata[key] = ticket.find(key).text
|
||||
|
||||
yield metadata
|
||||
"""
|
||||
for ticket in root:
|
||||
metadata = {}
|
||||
for field in ticket:
|
||||
if field.tag != textfield:
|
||||
if field.tag == "Zusammenfassung":
|
||||
# idee lösung nur whitespace entfernen, zusammenfassung auch von symbolen befreien
|
||||
metadata[field.tag] = cleanText_symbols(field.text)
|
||||
metadata[field.tag] = cleaner.removePunctuation(field.text)
|
||||
elif field.tag == "Loesung":
|
||||
metadata[field.tag] = remove_whitespace(field.text)
|
||||
metadata[field.tag] = cleaner.removeWhitespace(field.text)
|
||||
else:
|
||||
metadata[field.tag] = field.text
|
||||
|
||||
yield metadata
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
|
||||
"""
|
||||
https://spacy.io/docs/usage/pos-tagging
|
||||
|
||||
cleans text from PUNCT, NUM, whitespaces, newlines, and the following list of symbols:
|
||||
|
||||
["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"]
|
||||
|
||||
"""
|
||||
if custom_symbols is not None:
|
||||
custom_symbols = custom_symbols
|
||||
else:
|
||||
|
@ -360,18 +344,21 @@ def cleanText_words(string,parser=PARSER, custom_stopwords=None, custom_words=No
|
|||
#remove_whitespace(" ".join(tokens))
|
||||
|
||||
|
||||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
|
||||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität): abkürzungsverezeichnis
|
||||
|
||||
if normalize_synonyms:
|
||||
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||||
|
||||
return " ".join(set(tokens))
|
||||
|
||||
def remove_whitespace(sentence):
|
||||
def cleanText_removeWhitespace(sentence):
|
||||
whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
|
||||
sentence = whitespaceFinder.sub(" ", sentence)
|
||||
return sentence
|
||||
|
||||
#todo: preprocess pipe: removewhitespace, removePUNCT, resolveAbk, keepPOS, keepEnt, removeWords, normalizeSynonyms
|
||||
|
||||
|
||||
def getFirstSynonym(word, thesaurus_gen):
|
||||
|
||||
word = word.lower()
|
||||
|
@ -407,7 +394,7 @@ def getHauptform(syn_block, word, default_return_first_Syn=False):
|
|||
if not re.match(r'\([^)]+\)', w):
|
||||
return w
|
||||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||
|
||||
"""
|
||||
|
||||
def printRandomDoc(textacyCorpus):
|
||||
print()
|
||||
|
@ -434,18 +421,14 @@ custom_words = ["grüßen", "fragen"]
|
|||
|
||||
####################'####################'####################'####################'####################'##############
|
||||
|
||||
#PARSER = de_core_news_md.load()
|
||||
|
||||
THESAURUS_list=list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";")) ## !!!!!! list wichtig, da sonst nicht die gleichen Synonyme zurückgegeben werden, weil der generator während der laufzeit pickt
|
||||
|
||||
|
||||
#todo joar diese pipe halt und vllt ne config-file
|
||||
|
||||
|
||||
## files to textacy-corpus
|
||||
textacyCorpus = textacy.Corpus(PARSER)
|
||||
|
||||
print("add texts to textacy-corpus...")
|
||||
textacyCorpus.add_texts(texts=generateTextfromXML(DATAPATH,normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromXML(DATAPATH))
|
||||
textacyCorpus.add_texts(texts=generateTextfromTicketXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromTicketXML(DATAPATH))
|
||||
|
||||
|
||||
#for txt, dic in generateFromXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize):
|
||||
|
|
165
test.py
165
test.py
|
@ -1,165 +0,0 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
|
||||
import spacy
|
||||
import textacy
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
DATAPATH_thesaurus = "openthesaurus.csv"
|
||||
|
||||
|
||||
PARSER = spacy.load('de')
|
||||
|
||||
|
||||
|
||||
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
|
||||
"""
|
||||
https://spacy.io/docs/usage/pos-tagging
|
||||
|
||||
cleans text from PUNCT, NUM, whitespaces, newlines, and the following list of symbols:
|
||||
|
||||
["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"]
|
||||
|
||||
"""
|
||||
if custom_symbols is not None:
|
||||
custom_symbols = custom_symbols
|
||||
else:
|
||||
custom_symbols = []
|
||||
|
||||
if keep is not None:
|
||||
keep = keep
|
||||
else:
|
||||
keep = []
|
||||
|
||||
# List of symbols we don't care about
|
||||
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
||||
|
||||
# parse with spaCy
|
||||
spacy_doc = parser(string)
|
||||
tokens = []
|
||||
|
||||
pos = ["NUM", "SPACE", "PUNCT"]
|
||||
for p in keep:
|
||||
pos.remove(p)
|
||||
|
||||
|
||||
# append Tokens to a list
|
||||
for tok in spacy_doc:
|
||||
if tok.pos_ not in pos:
|
||||
tokens.append(tok.text.lower().strip())
|
||||
|
||||
|
||||
# remove symbols
|
||||
tokens = [tok for tok in tokens if tok not in symbols]
|
||||
|
||||
# remove whitespace
|
||||
remove_whitespace(" ".join(tokens))
|
||||
|
||||
return " ".join(tokens)
|
||||
|
||||
def cleanText_words(string, parser=PARSER, custom_stopwords=None, custom_words=None, customPreprocessing=cleanText_symbols, lemmatize=False, normalize_synonyms=False):
|
||||
|
||||
# use preprocessing
|
||||
if customPreprocessing is not None:
|
||||
string = customPreprocessing(string)
|
||||
|
||||
if custom_stopwords is not None:
|
||||
custom_stopwords = custom_stopwords
|
||||
else:
|
||||
custom_stopwords = []
|
||||
|
||||
if custom_words is not None:
|
||||
custom_words = custom_words
|
||||
else:
|
||||
custom_words = []
|
||||
|
||||
|
||||
# custom stoplist
|
||||
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
||||
stop_words = __import__("spacy." + parser.lang, globals(), locals(), ['object']).STOP_WORDS
|
||||
|
||||
stoplist =list(stop_words) + custom_stopwords
|
||||
|
||||
# replace twitter
|
||||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||||
string = mentionFinder.sub("MENTION", string)
|
||||
|
||||
# replace emails
|
||||
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||||
string = emailFinder.sub("EMAIL", string)
|
||||
|
||||
# replace urls
|
||||
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||||
string = urlFinder.sub("URL", string)
|
||||
|
||||
# replace HTML symbols
|
||||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||||
|
||||
|
||||
|
||||
# parse with spaCy
|
||||
spacy_doc = parser(string)
|
||||
tokens = []
|
||||
|
||||
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
||||
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||||
|
||||
# append Tokens to a list
|
||||
for tok in spacy_doc:
|
||||
if tok.pos_ in added_POS:
|
||||
if lemmatize:
|
||||
tokens.append(tok.lemma_.lower().strip())
|
||||
else:
|
||||
tokens.append(tok.text.lower().strip())
|
||||
|
||||
# add entities
|
||||
if tok.ent_type_ in added_entities:
|
||||
tokens.append(tok.text.lower())
|
||||
|
||||
|
||||
|
||||
# remove stopwords
|
||||
tokens = [tok for tok in tokens if tok not in stoplist]
|
||||
|
||||
# remove custom_words
|
||||
tokens = [tok for tok in tokens if tok not in custom_words]
|
||||
|
||||
# remove single characters
|
||||
tokens = [tok for tok in tokens if len(tok)>1]
|
||||
|
||||
# remove large strings of whitespace
|
||||
#remove_whitespace(" ".join(tokens))
|
||||
|
||||
|
||||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
|
||||
|
||||
#if normalize_synonyms:
|
||||
# tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||||
|
||||
return " ".join(tokens)
|
||||
|
||||
def remove_whitespace(sentence):
|
||||
whitespaceFinder = re.compile(r'(\r\n|\r|\n|\s)', re.IGNORECASE)
|
||||
sentence = whitespaceFinder.sub(" ", sentence)
|
||||
return sentence
|
||||
|
||||
def cleanText_normalize(string, parser=PARSER, customPreprocessing=cleanText_words, lemmatize=True):
|
||||
# use preprocessing
|
||||
if customPreprocessing is not None:
|
||||
string = customPreprocessing(string)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
string = "Frau Hinrichs überdenkt die Situation und 545453 macht dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
|
||||
print(cleanText_symbols(string=string, parser=PARSER, keep=["NUM"]))
|
||||
|
||||
|
||||
string = "Frau Hinrichs überdenkt die Situation und 545453 macht dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
|
||||
print(cleanText_symbols(string=string, parser=PARSER, keep=None))
|
|
@ -0,0 +1,245 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import spacy
|
||||
import functools
|
||||
|
||||
import textacy
|
||||
|
||||
|
||||
class TextCleaner:
|
||||
|
||||
def __init__(self, parser, thesaurus=None, customClass_symbols=None, customClass_words=None, keep4Class=None):
|
||||
"""
|
||||
:param parser: spacy-parser
|
||||
:param thesaurus: [[syn1, syn2, ...],[syn1, syn2, ...], ...]
|
||||
:param customClass_symbols:[str]
|
||||
:param customClass_words:[str]
|
||||
:param customClassPOS:[str]
|
||||
:param keep4Class: [str]
|
||||
"""
|
||||
if thesaurus is None:
|
||||
DATAPATH_thesaurus = "openthesaurus.csv"
|
||||
|
||||
## !!!!!! list wichtig, da sonst nicht die gleichen Synonyme zurückgegeben werden, weil ein generator während der laufzeit pickt
|
||||
self.thesaurus = list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";"))
|
||||
else:
|
||||
self.thesaurus = thesaurus
|
||||
|
||||
self.parser = parser
|
||||
|
||||
|
||||
|
||||
self.whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
|
||||
self.mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||||
self.emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||||
self.urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||||
|
||||
|
||||
|
||||
# to remove
|
||||
self.symbols = ["-----", "---", "...", "“", "”", ".", "-", "<", ">", ",", "?", "!", "..", "n’t", "n't", "|", "||",
|
||||
";", ":",
|
||||
"…", "’s", "'s", ".", "(", ")", "[", "]", "#"] + (customClass_symbols if customClass_symbols is not None else [])
|
||||
self.stop_words = list(__import__("spacy." + self.parser.lang, globals(), locals(), ['object']).STOP_WORDS)+ (customClass_words if customClass_words is not None else [])
|
||||
|
||||
|
||||
|
||||
# to keep
|
||||
self.entities2keep = ["WORK_OF_ART", "ORG", "PRODUCT", "LOC"] # ,"PERSON"]
|
||||
self.pos2keep = ["NOUN"] # , "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||||
|
||||
self.entities2keep = self.entities2keep + (keep4Class if keep4Class is not None else [])
|
||||
self.pos2keep = self.pos2keep + (keep4Class if keep4Class is not None else [])
|
||||
|
||||
|
||||
keep = (keep4Class if hasattr(keep4Class, '__iter__') else []) + self.pos2keep + self.entities2keep
|
||||
|
||||
|
||||
# modify those to remove with those to keep
|
||||
for sym in keep:
|
||||
try:
|
||||
self.symbols.remove(sym)
|
||||
except ValueError:
|
||||
try:
|
||||
self.stop_words.remove(sym)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
|
||||
# idee self.currentDoc = spacy.Doc für jeden String aber nicht füpr jede methode
|
||||
|
||||
def removeWhitespace(self, string):
|
||||
string = self.whitespaceFinder.sub(" ", string)
|
||||
return string
|
||||
|
||||
|
||||
def removePunctuation(self, string, custom_symbols=None, keep=None):
|
||||
|
||||
|
||||
symbols = self.symbols + (custom_symbols if custom_symbols is not None else [])
|
||||
|
||||
if hasattr(keep, '__iter__'):
|
||||
for k in keep:
|
||||
try:
|
||||
symbols.remove(k)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
|
||||
# parse with spaCy
|
||||
doc = self.parser(string)
|
||||
tokens = []
|
||||
|
||||
# append Tokens to a list
|
||||
for tok in doc:
|
||||
if not tok.is_punct and not tok.is_space and tok.text not in symbols:
|
||||
tokens.append(tok.text)
|
||||
|
||||
return " ".join(tokens)
|
||||
|
||||
def resolveAbbreviations(self,string):
|
||||
return string #todo
|
||||
|
||||
|
||||
def keepPOSandENT(self, string, customPOS=None, customEnt=None, remove=None):
|
||||
|
||||
pos2keep = self.pos2keep + (customPOS if customPOS is not None else [])
|
||||
ent = self.entities2keep + (customEnt if customEnt is not None else [])
|
||||
|
||||
if hasattr(remove, '__iter__'):
|
||||
for k in remove:
|
||||
try:
|
||||
ent.remove(k)
|
||||
except ValueError:
|
||||
try:
|
||||
pos2keep.remove(k)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
# parse with spaCy
|
||||
spacy_doc = self.parser(string)
|
||||
tokens = []
|
||||
|
||||
# append Tokens to a list
|
||||
for tok in spacy_doc:
|
||||
|
||||
if tok.pos_ in pos2keep:
|
||||
tokens.append(tok.text)
|
||||
|
||||
if tok.ent_type_ in ent:
|
||||
tokens.append(tok.text)
|
||||
|
||||
return " ".join(set(tokens))
|
||||
|
||||
|
||||
|
||||
def removeWords(self,string, custom_words=None, keep=None, lemmatize=False):
|
||||
|
||||
wordlist = self.stop_words + (custom_words if custom_words is not None else [])
|
||||
if hasattr(keep, '__iter__'):
|
||||
for k in keep:
|
||||
try:
|
||||
wordlist.remove(k)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
|
||||
|
||||
string = self.urlFinder.sub("URL", string)
|
||||
string = self.emailFinder.sub("EMAIL", string)
|
||||
string = self.mentionFinder.sub("MENTION", string)
|
||||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||||
|
||||
|
||||
# parse with spaCy
|
||||
spacy_doc = self.parser(string)
|
||||
tokens = []
|
||||
|
||||
# append Tokens to a list
|
||||
for tok in spacy_doc:
|
||||
|
||||
#do not include stopwords/customwords and single chars
|
||||
if tok.text not in wordlist and len(tok)>1:
|
||||
if lemmatize:
|
||||
tokens.append(tok.lemma_)
|
||||
else:
|
||||
tokens.append(tok.lower_)
|
||||
return " ".join(set(tokens))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def normalizeSynonyms(self, string, default_return_first_Syn=False):
|
||||
# parse with spaCy
|
||||
spacy_doc = self.parser(string)
|
||||
tokens = []
|
||||
|
||||
tokens = [str(self.getFirstSynonym(tok, self.thesaurus, default_return_first_Syn=default_return_first_Syn)) for tok in spacy_doc]
|
||||
|
||||
return " ".join(set(tokens))
|
||||
|
||||
|
||||
|
||||
def getFirstSynonym(self,word, thesaurus, default_return_first_Syn=False):
|
||||
if not isinstance(word, str):
|
||||
return word
|
||||
|
||||
|
||||
word = word.lower()
|
||||
|
||||
|
||||
# durch den thesaurrus iterieren
|
||||
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
||||
|
||||
for syn in syn_block:
|
||||
syn = syn.lower()
|
||||
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
||||
if word == syn:
|
||||
return self.getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)
|
||||
else: # falls es ein satz ist
|
||||
if word in syn:
|
||||
return self.getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)
|
||||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||
|
||||
def getHauptform(self,syn_block, word, default_return_first_Syn=False):
|
||||
|
||||
for syn in syn_block:
|
||||
syn = syn.lower()
|
||||
|
||||
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
||||
# nicht ausgeben, falls es in Klammern steht
|
||||
for w in syn.split(" "):
|
||||
if not re.match(r'\([^)]+\)', w):
|
||||
return w
|
||||
|
||||
if default_return_first_Syn:
|
||||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||||
for w in syn_block:
|
||||
if not re.match(r'\([^)]+\)', w):
|
||||
return w
|
||||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||
|
||||
|
||||
|
||||
|
||||
cleaner = TextCleaner(parser=spacy.load('de'))
|
||||
|
||||
string = "Frau Hinrichs überdenkt die tu Situation und 545453 macht ' dann neue Anträge. \n Dieses Ticket wird geschlossen \n \n test"
|
||||
|
||||
|
||||
#################################################################################################################
|
||||
|
||||
#todo funzt irgendwie nich wie's soll: https://mathieularose.com/function-composition-in-python/
|
||||
def compose(self,*functions):
|
||||
return functools.reduce(lambda f, g: lambda x: f(g(x)), functions, lambda x: x)
|
||||
|
||||
pipeline = compose(functools.partial(cleaner.keepPOSandENT,lemmatize=True))#, cleaner.normalizeSynonyms)
|
||||
|
||||
#################################################################################################################
|
||||
print(cleaner.removePunctuation(string))
|
||||
print(cleaner.keepPOSandENT(string))
|
||||
|
||||
|
Loading…
Reference in New Issue