bereit für erstes topic modeling mit gesamter tickets.csv

This commit is contained in:
jannis.grundmann 2017-09-14 11:40:00 +02:00
parent 26c0f37ec8
commit 13ec7cdef4
8 changed files with 502348 additions and 57 deletions

File diff suppressed because one or more lines are too long

280
test.py
View File

@ -18,6 +18,16 @@ from textacy import Vectorizer
import warnings
csv.field_size_limit(sys.maxsize)
import sys
old_stdout = sys.stdout
log_file = open("printout.log","w")
sys.stdout = log_file
# Load the configuration file
@ -28,17 +38,17 @@ with open("config.ini") as f:
path2csv = "M42-Export/Tickets_small.csv"
#path2csv = "M42-Export/Tickets_2017-09-13.csv" # 21167
path2xml = config.get("default","path2xml")
thesauruspath = config.get("default","thesauruspath")
DE_PARSER = spacy.load("de")
de_stop_words=list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)
corpus = textacy.Corpus(DE_PARSER)
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
@ -85,11 +95,8 @@ def printRandomDoc(textacyCorpus):
print()
############# on xml
def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
############# load xml
def generateMainTextfromTicketXML(path2xml, main_textfield='Description'):
"""
generates strings from XML
:param path2xml:
@ -104,7 +111,7 @@ def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
for field in ticket:
if field.tag == main_textfield:
yield field.text
def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']):
def generateMetadatafromTicketXML(path2xml, leave_out=['Description']):
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
@ -118,8 +125,7 @@ def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']):
yield metadata
############# on csv
############# load csv
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
"""
@ -164,11 +170,13 @@ def csv_to_metaStream(path2csv: str, metalist: [str]):
yield metadata
print("############################################ Preprocessing ##############################################")
print()
############# on str-gen
def processTokens(tokens, funclist, parser):
# in:tokenlist, funclist
# out: tokenlist
@ -182,36 +190,16 @@ def processTokens(tokens, funclist, parser):
tokens = [tok for tok in doc] # nur tokens
elif 'spacy.tokens.doc.Doc' in str(f.__annotations__):
toks = f(tokens)
tokens = [tok for tok in toks]
#todo wirkt gefrickelt
doc = parser(" ".join(tok.lower_ for tok in tokens)) # geparsed
tokens = f(doc)
doc = parser(" ".join(tokens)) # geparsed
tokens = [tok for tok in doc] # nur tokens
else:
warnings.warn("Unknown Annotation while preprocessing. Function: {0}".format(str(f)))
return tokens
############# return docs
def keepUniqueTokens() -> spacy.tokens.Doc:
#todo in:tok out:doc
ret = lambda doc: (set([tok.lower_ for tok in doc]))
ret.__annotations__ = get_calling_function().__annotations__
return ret
def processTextstream(textstream, funclist, parser=DE_PARSER):
"""
:param textstream: string-gen
@ -261,8 +249,7 @@ def processDictstream(dictstream, funcdict, parser=DE_PARSER):
yield result
############# return tokens
############# return bool
def keepPOS(pos_list) -> bool:
ret = lambda tok : tok.pos_ in pos_list
@ -352,7 +339,6 @@ def getHauptform(syn_block, word, default_return_first_Syn=False):
return word # zur Not, das ursrpüngliche Wort zurückgeben
############# return strings
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
@ -395,28 +381,50 @@ def resolveAbbreviations():
pass #todo
############# return docs #todo das stimmt nicht so ganz, da kommt kein doc raus, sondern n tokenset
def keepUniqeTokens() -> spacy.tokens.Doc:
ret = lambda doc: (set([tok.lower_ for tok in doc]))
ret.__annotations__ = get_calling_function().__annotations__
return ret
def lower() -> spacy.tokens.Doc:
ret = lambda doc: ([tok.lower_ for tok in doc])
ret.__annotations__ = get_calling_function().__annotations__
return ret
ticketcorpus = textacy.Corpus(DE_PARSER)
metaliste = [
"Subject",
"categoryName",
"Solution"
]
path2csv = "M42-Export/Tickets_small.csv"
clean_in_meta = {
"Solution":[removePOS(["SPACE"])],
"Subject":[removePOS(["SPACE","PUNCT"])]
"Solution":[removePOS(["SPACE"]),lower()],
"Subject":[removePOS(["SPACE","PUNCT"]),lower()]
}
clean_in_content=[
removePOS(["SPACE","PUNCT","NUM"]),
#removePOS(["SPACE","PUNCT","NUM"]),
keepPOS(["NOUN"]),
replaceURLs(),
replaceEmails(),
removeWords(de_stop_words),
lemmatize()
removePOS(["SPACE","PUNCT","NUM"]),
#replaceURLs(),
#replaceEmails(),
lemmatize(),
#removeWords(de_stop_words),
keepUniqeTokens(),
removePOS(["PUNCT"]),
]
@ -424,17 +432,169 @@ clean_in_content=[
## add files to textacy-corpus,
print("add texts to textacy-corpus...")
corpus.add_texts(
ticketcorpus.add_texts(
processTextstream(csv_to_contentStream(path2csv,"Description"), clean_in_content),
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
)
printRandomDoc(corpus)
printRandomDoc(ticketcorpus)
end = time.time()
print("\n\nTime Elapsed Preprocessing:{0}\n\n".format(end - start))
print("############################################ Topic Modeling #############################################")
print("\n\n")
start = time.time()
# build citionary of ticketcategories
labelist = []
for texdoc in ticketcorpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
labelist.append(texdoc.metadata["categoryName"])
LABELDICT = {k: v for v, k in enumerate(labelist)}
print(LABELDICT)
def label2ID(label,labeldict=LABELDICT):
return labeldict.get(label,len(labeldict))
def generate_labled_lines(textacyCorpus):
for doc in textacyCorpus:
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
####################'####################' todo alles in config
ngrams = (1)
min_df = 0
max_df = 1.0
no_below = 20
no_above = 0.5
topicModel = 'lda'
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
top_topic_words = 7
top_document_labels_per_topic = 2
n_topics = len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
####################'####################
print("\nvectorize corpus...")
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in ticketcorpus)
doc_term_matrix = vectorizer.fit_transform(terms_list)
id2term = vectorizer.__getattribute__("id_to_term")
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
# Initialize and train a topic model
print("\nInitialize and train a topic model..")
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
model.fit(doc_term_matrix)
#Transform the corpus and interpret our model:
print("Transform the corpus and interpret our model..")
doc_topic_matrix = model.transform(doc_term_matrix)
print()
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
print('topic', topic_idx, ':', ' '.join(top_terms))
print()
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
print(topic_idx)
for j in top_docs:
print(ticketcorpus[j].metadata['categoryName'])
#####################################################################################################################
print()
print()
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
jgibbsLLDA_root = "java_LabledLDA/"
filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
#create file
textacy.fileio.write_file_lines(generate_labled_lines(ticketcorpus),filepath=filepath)
# wait for file to exist
while not os.path.exists(filepath):
time.sleep(1)
print("\nstart LLDA:\n")
#run JGibsslda file
FNULL = open(os.devnull, 'w') # supress output
subprocess.call(["java",
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
"jgibblda.LDA",
"-est",
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
"-dfile","tickets.gz",
"-twords",str(top_topic_words),
"-ntopics", str(n_topics)], stdout = FNULL)
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
#print twords
subprocess.call(["gzip",
"-dc",
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
#####################################################################################################################
print()
print()
@ -442,4 +602,10 @@ printRandomDoc(corpus)
end = time.time()
print("\n\n\nTime Elapsed:{0}".format(end - start))
print("\n\n\nTime Elapsed Topic Modeling:{0}\n\n".format(end - start))
sys.stdout = old_stdout
log_file.close()