thesaurus fertiggestellt
This commit is contained in:
parent
1a99d117ac
commit
3bfbebc894
303
testo.py
303
testo.py
|
@ -8,7 +8,7 @@ print(datetime.now())
|
||||||
|
|
||||||
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
|
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
|
||||||
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
|
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
|
||||||
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
|
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
|
||||||
|
|
||||||
path_csv_split = path2csv.split("/")
|
path_csv_split = path2csv.split("/")
|
||||||
print(path_csv_split[len(path_csv_split)-1])
|
print(path_csv_split[len(path_csv_split)-1])
|
||||||
|
@ -62,9 +62,17 @@ logging.basicConfig(filename=logile, level=logging.INFO)
|
||||||
#logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
#logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
||||||
|
|
||||||
|
|
||||||
thesauruspath = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/openthesaurus.csv"
|
#thesauruspath = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/openthesaurus.csv"
|
||||||
#thesauruspath = config.get("filepath","thesauruspath")
|
#thesauruspath = config.get("filepath","thesauruspath")
|
||||||
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
#THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
||||||
|
|
||||||
|
|
||||||
|
# THESAURUS
|
||||||
|
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
|
||||||
|
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
|
||||||
|
|
||||||
|
path2words = '/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt'
|
||||||
|
|
||||||
|
|
||||||
from langdetect import detect
|
from langdetect import detect
|
||||||
|
|
||||||
|
@ -90,9 +98,9 @@ LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
|
||||||
|
|
||||||
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
|
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
|
||||||
"""
|
"""
|
||||||
|
from nltk.corpus import stopwords
|
||||||
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")))
|
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")))
|
||||||
|
de_stop_words = de_stop_words + list(set(stopwords.words('english')))
|
||||||
#en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS))
|
#en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS))
|
||||||
|
|
||||||
LEMMAS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
|
LEMMAS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
|
||||||
|
@ -430,8 +438,141 @@ def lemmatizeWord(word, l_dict=lemma_dict, w_dict=word_dict, n=3):
|
||||||
print(word)
|
print(word)
|
||||||
return word
|
return word
|
||||||
|
|
||||||
|
def build_thesaurus(path2lexicalentries, path2synsets):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lextree = ET.parse(path2lexicalentries, ET.XMLParser(encoding="utf-8"))
|
||||||
|
syntree = ET.parse(path2synsets, ET.XMLParser(encoding="utf-8"))
|
||||||
|
|
||||||
|
lexroot = lextree.getroot()
|
||||||
|
synroot = syntree.getroot()
|
||||||
|
|
||||||
|
thesaurus=[]
|
||||||
|
|
||||||
|
for r in synroot:
|
||||||
|
for element in r:
|
||||||
|
|
||||||
|
if element.tag == "Synset":
|
||||||
|
sysnet = []
|
||||||
|
attrib = element.attrib
|
||||||
|
id = attrib["id"]
|
||||||
|
|
||||||
|
|
||||||
|
for ro in lexroot:
|
||||||
|
for elem in ro:
|
||||||
|
if elem.tag == "LexicalEntry":
|
||||||
|
subs_dicts = [subentry.attrib for subentry in elem]
|
||||||
|
#<class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
|
||||||
|
|
||||||
|
dic = {k:v for x in subs_dicts for k,v in x.items()} # to one dict
|
||||||
|
if "synset" in dic.keys():
|
||||||
|
if dic["synset"] == id:
|
||||||
|
|
||||||
|
string = (dic["writtenForm"])
|
||||||
|
|
||||||
|
# replaceRockDots
|
||||||
|
string = re.sub(r'[ß]', "ss", string)
|
||||||
|
string = re.sub(r'[ö]', "oe", string)
|
||||||
|
string = re.sub(r'[ü]', "ue", string)
|
||||||
|
string = re.sub(r'[ä]', "ae", string)
|
||||||
|
|
||||||
|
|
||||||
|
# alle punkte raus
|
||||||
|
string = re.sub(r'[.]', "", string)
|
||||||
|
|
||||||
|
# alles in klammern raus
|
||||||
|
string = re.sub(r"\((.*)\)", " ", string)
|
||||||
|
|
||||||
|
# längeres leerzeichen normalisieren
|
||||||
|
string = textacy.preprocess.normalize_whitespace(string)
|
||||||
|
|
||||||
|
|
||||||
|
sysnet.append(string.lower().strip())
|
||||||
|
|
||||||
|
# nach anzhal der wörter in den strings sortieren
|
||||||
|
sysnet.sort(key=lambda x: len(x.split()))
|
||||||
|
if len(sysnet) != 0:
|
||||||
|
#todo warum sind manche leer?
|
||||||
|
thesaurus.append(sysnet)
|
||||||
|
return thesaurus
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
THESAURUS=[]
|
||||||
|
#THESAURUS=build_thesaurus(path2lexicalentries=lexicalentries,path2synsets=synsets) #todo anschalten
|
||||||
|
|
||||||
|
def getFirstSynonym(word, thesaurus=THESAURUS):
|
||||||
|
if not isinstance(word, str):
|
||||||
|
return str(word)
|
||||||
|
|
||||||
|
word = word.lower()
|
||||||
|
|
||||||
|
# durch den thesaurrus iterieren
|
||||||
|
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
||||||
|
|
||||||
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist todo phrasen auch normalisieren
|
||||||
|
if word == syn:
|
||||||
|
return syn_block[0]
|
||||||
|
|
||||||
|
return str(word) # zur Not das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
########################## Spellchecking ##########################################
|
||||||
|
|
||||||
|
#http://norvig.com/spell-correct.html
|
||||||
|
|
||||||
|
#http://wortschatz.uni-leipzig.de/en/download
|
||||||
|
|
||||||
|
import re
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def words(text): return re.findall(r'\w+', text.lower())
|
||||||
|
|
||||||
|
|
||||||
|
WORDS={}
|
||||||
|
#WORDS = Counter(words(open(path2words).read())) #todo anschalten
|
||||||
|
|
||||||
|
def P(word, N=sum(WORDS.values())):
|
||||||
|
"Probability of `word`."
|
||||||
|
return WORDS[word] / N
|
||||||
|
|
||||||
|
def correction(word):
|
||||||
|
"Most probable spelling correction for word."
|
||||||
|
return max(candidates(word), key=P)
|
||||||
|
|
||||||
|
def candidates(word):
|
||||||
|
"Generate possible spelling corrections for word."
|
||||||
|
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
|
||||||
|
|
||||||
|
def known(words):
|
||||||
|
"The subset of `words` that appear in the dictionary of WORDS."
|
||||||
|
return set(w for w in words if w in WORDS)
|
||||||
|
|
||||||
|
def edits1(word):
|
||||||
|
"All edits that are one edit away from `word`."
|
||||||
|
letters = 'abcdefghijklmnopqrstuvwxyz'
|
||||||
|
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
||||||
|
deletes = [L + R[1:] for L, R in splits if R]
|
||||||
|
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
||||||
|
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
||||||
|
inserts = [L + c + R for L, R in splits for c in letters]
|
||||||
|
return set(deletes + transposes + replaces + inserts)
|
||||||
|
|
||||||
|
def edits2(word):
|
||||||
|
"All edits that are two edits away from `word`."
|
||||||
|
return (e2 for e1 in edits1(word) for e2 in edits1(e1))
|
||||||
|
"""
|
||||||
DE_SPELLCHECKER = enchant.Dict("de_DE")
|
DE_SPELLCHECKER = enchant.Dict("de_DE")
|
||||||
EN_SPELLCHECKER = enchant.Dict("en_US")
|
EN_SPELLCHECKER = enchant.Dict("en_US")
|
||||||
|
|
||||||
|
@ -440,6 +581,18 @@ def autocorrectWord(word, spellchecker=DE_SPELLCHECKER):
|
||||||
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
|
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
|
||||||
except:
|
except:
|
||||||
return word
|
return word
|
||||||
|
"""
|
||||||
|
|
||||||
|
def autocorrectWord(word):
|
||||||
|
try:
|
||||||
|
return correction(word)
|
||||||
|
except:
|
||||||
|
return word
|
||||||
|
|
||||||
|
|
||||||
|
##################################################################################################
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
############# stringcleaning
|
############# stringcleaning
|
||||||
|
|
||||||
|
@ -475,6 +628,9 @@ def stringcleaning(stringstream):
|
||||||
# lemmatize
|
# lemmatize
|
||||||
string = " ".join([lemmatizeWord(word) for word in string.split()])
|
string = " ".join([lemmatizeWord(word) for word in string.split()])
|
||||||
|
|
||||||
|
# synonyme normalisieren #idee vor oder nach lemmatize?
|
||||||
|
#string = " ".join([getFirstSynonym(word) for word in string.split()])
|
||||||
|
|
||||||
# autocorrect
|
# autocorrect
|
||||||
#string = " ".join([autocorrectWord(word) for word in string.split()])
|
#string = " ".join([autocorrectWord(word) for word in string.split()])
|
||||||
|
|
||||||
|
@ -534,10 +690,8 @@ def processContentstream(textstream, token_filterlist=None, parser=DE_PARSER):
|
||||||
tokens = filterTokens(tokens, token_filterlist)
|
tokens = filterTokens(tokens, token_filterlist)
|
||||||
|
|
||||||
|
|
||||||
|
yield " ".join([tok.lower_ for tok in tokens])
|
||||||
|
#yield " ".join(list(set([tok.lower_ for tok in tokens])))
|
||||||
#yield " ".join([tok.lower_ for tok in tokens])
|
|
||||||
yield " ".join(list(set([tok.lower_ for tok in tokens])))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -602,8 +756,6 @@ custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","vora
|
||||||
filter_tokens=[
|
filter_tokens=[
|
||||||
#removeENT(["PERSON"]),
|
#removeENT(["PERSON"]),
|
||||||
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
||||||
#idee rechtschreibkorrektur --> PyEnchant
|
|
||||||
#idee thesaurus --> WordNet
|
|
||||||
|
|
||||||
keepNouns(),
|
keepNouns(),
|
||||||
|
|
||||||
|
@ -696,6 +848,11 @@ de_corpus.add_texts(
|
||||||
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
|
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# leere docs aus corpus kicken
|
||||||
|
de_corpus.remove(lambda doc: len(doc)==0)
|
||||||
|
|
||||||
|
|
||||||
for i in range(10):
|
for i in range(10):
|
||||||
printRandomDoc(de_corpus)
|
printRandomDoc(de_corpus)
|
||||||
|
|
||||||
|
@ -706,6 +863,44 @@ end = time.time()
|
||||||
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def printvecotorization(ngrams = 1,min_df = 1,max_df = 1.0,weighting ='tf',named_entities=True):
|
||||||
|
|
||||||
|
printlog(str("ngrams: {0}".format(ngrams)))
|
||||||
|
printlog(str("min_df: {0}".format(min_df)))
|
||||||
|
printlog(str("max_df: {0}".format(max_df)))
|
||||||
|
printlog(str("named_entities: {0}".format(named_entities)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#printlog("vectorize corpus...")
|
||||||
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
||||||
|
|
||||||
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=named_entities, as_strings=True) for doc in de_corpus)
|
||||||
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
||||||
|
id2term = vectorizer.__getattribute__("id_to_term")
|
||||||
|
|
||||||
|
|
||||||
|
for t in terms_list:
|
||||||
|
print(t)
|
||||||
|
printlog("doc_term_matrix: {0}".format(doc_term_matrix))
|
||||||
|
printlog("id2term: {0}".format(id2term))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# todo gescheites tf(-idf) maß finden #idee: tf wird bei token-set immer = 1 sein
|
||||||
|
ngrams = 1
|
||||||
|
min_df = 1
|
||||||
|
max_df = 1.0
|
||||||
|
weighting = 'tf'
|
||||||
|
# weighting ='tfidf'
|
||||||
|
named_entities = False
|
||||||
|
|
||||||
|
#printvecotorization(ngrams=ngrams,min_df=min_df,max_df=max_df,weighting=weighting,named_entities=named_entities)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/"
|
corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/"
|
||||||
corpus_name = "de_corpus"
|
corpus_name = "de_corpus"
|
||||||
|
@ -809,7 +1004,7 @@ def topicModeling(ngrams,min_df,max_df,topicModel = 'lda',n_topics = len(LABELDI
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
topicModeling(ngrams = 1,
|
topicModeling(ngrams = 1,
|
||||||
min_df = 1,
|
min_df = 1,
|
||||||
max_df = 1.0,
|
max_df = 1.0,
|
||||||
|
@ -851,51 +1046,55 @@ topicModeling(ngrams = (1,2),
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
|
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
|
||||||
|
|
||||||
|
|
||||||
|
top_topic_words = 10
|
||||||
|
|
||||||
|
|
||||||
print("\n\n")
|
print("\n\n")
|
||||||
start = time.time()
|
start = time.time()
|
||||||
|
|
||||||
|
@ -933,7 +1132,7 @@ LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
||||||
#create file
|
#create file
|
||||||
textacy.fileio.write_file_lines(generate_labled_lines(de_corpus), filepath=LLDA_filepath)
|
textacy.fileio.write_file_lines(generate_labled_lines(de_corpus), filepath=LLDA_filepath)
|
||||||
|
|
||||||
|
#todfo ticket drucken
|
||||||
# wait for file to exist
|
# wait for file to exist
|
||||||
while not os.path.exists(LLDA_filepath):
|
while not os.path.exists(LLDA_filepath):
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
|
@ -965,7 +1164,7 @@ end = time.time()
|
||||||
printlog("\n\n\nTime Elapsed Topic Modeling JGibbsLLDA:{0} min\n\n".format((end - start)/60))
|
printlog("\n\n\nTime Elapsed Topic Modeling JGibbsLLDA:{0} min\n\n".format((end - start)/60))
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
108
testra.py
108
testra.py
|
@ -7,6 +7,7 @@ import textacy
|
||||||
|
|
||||||
start = time.time()
|
start = time.time()
|
||||||
|
|
||||||
|
import enchant
|
||||||
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
|
@ -15,12 +16,8 @@ import xml.etree.ElementTree as ET
|
||||||
print(datetime.now())
|
print(datetime.now())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
nomen=[]
|
|
||||||
#PARSER=spacy.load("de")
|
#PARSER=spacy.load("de")
|
||||||
|
|
||||||
#todo: thesaurus....yay...
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
|
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
|
||||||
|
@ -67,7 +64,6 @@ def getHauptform(syn_block, word, default_return_first_Syn=False):
|
||||||
### extract from deWordNet.xml
|
### extract from deWordNet.xml
|
||||||
|
|
||||||
#https://github.com/hdaSprachtechnologie/odenet
|
#https://github.com/hdaSprachtechnologie/odenet
|
||||||
#idee synsets bilden
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -98,90 +94,46 @@ for r in root:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
|
|
||||||
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
|
|
||||||
|
|
||||||
|
|
||||||
lextree = ET.parse(lexicalentries, ET.XMLParser(encoding="utf-8"))
|
|
||||||
syntree = ET.parse(synsets, ET.XMLParser(encoding="utf-8"))
|
|
||||||
|
|
||||||
lexroot = lextree.getroot()
|
|
||||||
synroot = syntree.getroot()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for r in synroot:
|
|
||||||
for element in r:
|
|
||||||
|
|
||||||
if element.tag == "Synset":
|
|
||||||
sysnet = []
|
|
||||||
attrib = element.attrib
|
|
||||||
id = attrib["id"]
|
|
||||||
|
|
||||||
|
|
||||||
for ro in lexroot:
|
|
||||||
for elem in ro:
|
|
||||||
if elem.tag == "LexicalEntry":
|
|
||||||
subs_dicts = [subentry.attrib for subentry in elem]
|
|
||||||
#<class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
|
|
||||||
|
|
||||||
dic = {k:v for x in subs_dicts for k,v in x.items()} # to one dict
|
|
||||||
if "synset" in dic.keys():
|
|
||||||
if dic["synset"] == id:
|
|
||||||
|
|
||||||
if id == "de-1004-n":
|
|
||||||
x = 0
|
|
||||||
|
|
||||||
string = (dic["writtenForm"])
|
|
||||||
|
|
||||||
# replaceRockDots
|
|
||||||
string = re.sub(r'[ß]', "ss", string)
|
|
||||||
string = re.sub(r'[ö]', "oe", string)
|
|
||||||
string = re.sub(r'[ü]', "ue", string)
|
|
||||||
string = re.sub(r'[ä]', "ae", string)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# alle punkte raus
|
|
||||||
string = re.sub(r'[.]', "", string)
|
|
||||||
|
|
||||||
|
|
||||||
# alles in klammern raus
|
|
||||||
stringlist = string.split()
|
|
||||||
strings=[]
|
|
||||||
for w in stringlist:
|
|
||||||
if not bool(re.match(r'/\(([^)]+)\)/', w)): #todo funzt nich wie's soll
|
|
||||||
strings.append(w)
|
|
||||||
string = " ".join(strings)
|
|
||||||
|
|
||||||
#re.sub(r'/\(([^)]+)\)/', " ", string)
|
|
||||||
|
|
||||||
|
|
||||||
sysnet.append(string.lower().strip())
|
|
||||||
|
|
||||||
|
|
||||||
print(id,sysnet)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
import re
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
def words(text): return re.findall(r'\w+', text.lower())
|
||||||
|
|
||||||
|
WORDS = Counter(words(open('/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt').read()))
|
||||||
|
|
||||||
|
def P(word, N=sum(WORDS.values())):
|
||||||
|
"Probability of `word`."
|
||||||
|
return WORDS[word] / N
|
||||||
|
|
||||||
|
def correction(word):
|
||||||
|
"Most probable spelling correction for word."
|
||||||
|
return max(candidates(word), key=P)
|
||||||
|
|
||||||
|
def candidates(word):
|
||||||
|
"Generate possible spelling corrections for word."
|
||||||
|
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
|
||||||
|
|
||||||
|
def known(words):
|
||||||
|
"The subset of `words` that appear in the dictionary of WORDS."
|
||||||
|
return set(w for w in words if w in WORDS)
|
||||||
|
|
||||||
|
def edits1(word):
|
||||||
|
"All edits that are one edit away from `word`."
|
||||||
|
letters = 'abcdefghijklmnopqrstuvwxyz'
|
||||||
|
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
||||||
|
deletes = [L + R[1:] for L, R in splits if R]
|
||||||
|
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
||||||
|
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
||||||
|
inserts = [L + c + R for L, R in splits for c in letters]
|
||||||
|
return set(deletes + transposes + replaces + inserts)
|
||||||
|
|
||||||
|
def edits2(word):
|
||||||
|
"All edits that are two edits away from `word`."
|
||||||
|
return (e2 for e1 in edits1(word) for e2 in edits1(e1))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -367,3 +319,5 @@ textacy.fileio.write_file_lines(de_stop_words,"german_stopwords.txt")
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print("\n\n\nTime Elapsed Topic:{0}\n\n".format(end - start))
|
print("\n\n\nTime Elapsed Topic:{0}\n\n".format(end - start))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue