preprocessing erstmal soweit fertig.
das mit der config wird noch verfeinert
This commit is contained in:
parent
f09a261816
commit
4dbb07ae3f
|
@ -0,0 +1,26 @@
|
||||||
|
[default]
|
||||||
|
|
||||||
|
thesauruspath = openthesaurus.csv
|
||||||
|
path2xml = ticketSamples.xml
|
||||||
|
|
||||||
|
language = de
|
||||||
|
|
||||||
|
[preprocessing]
|
||||||
|
|
||||||
|
ents = WORK_OF_ART,ORG,PRODUCT,LOC
|
||||||
|
|
||||||
|
custom_words = grüßen,fragen
|
||||||
|
|
||||||
|
#lemmatize = True
|
||||||
|
|
||||||
|
default_return_first_Syn = False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,466 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import csv
|
||||||
|
import random
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import spacy
|
||||||
|
import textacy
|
||||||
|
|
||||||
|
"""
|
||||||
|
import keras
|
||||||
|
import numpy as np
|
||||||
|
from keras.layers import Dense, SimpleRNN, LSTM, TimeDistributed, Dropout
|
||||||
|
from keras.models import Sequential
|
||||||
|
import keras.backend as K
|
||||||
|
"""
|
||||||
|
csv.field_size_limit(sys.maxsize)
|
||||||
|
|
||||||
|
"""
|
||||||
|
def getFirstSynonym(word, thesaurus_gen):
|
||||||
|
|
||||||
|
word = word.lower()
|
||||||
|
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
|
||||||
|
|
||||||
|
|
||||||
|
# durch den thesaurrus iterieren
|
||||||
|
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||||||
|
|
||||||
|
# durch den synonymblock iterieren
|
||||||
|
for syn in syn_block:
|
||||||
|
syn = syn.lower().split(" ") if not re.match(r'\A[\w-]+\Z', syn) else syn # aus synonym mach liste (um evtl. sätze zu identifieziren)
|
||||||
|
|
||||||
|
# falls das wort in dem synonym enthalten ist (also == einem Wort in der liste ist)
|
||||||
|
if word in syn:
|
||||||
|
|
||||||
|
# Hauptform suchen
|
||||||
|
if "auptform" in syn:
|
||||||
|
# nicht ausgeben, falls es in Klammern steht
|
||||||
|
for w in syn:
|
||||||
|
if not re.match(r'\([^)]+\)', w) and w is not None:
|
||||||
|
return w
|
||||||
|
|
||||||
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||||||
|
if len(syn) == 1:
|
||||||
|
w = syn[0]
|
||||||
|
if not re.match(r'\([^)]+\)', w) and w is not None:
|
||||||
|
return w
|
||||||
|
|
||||||
|
return word # zur Not die eingabe ausgeben
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False, normalize_synonyms=False):
|
||||||
|
|
||||||
|
# use preprocessing
|
||||||
|
if customPreprocessing is not None:
|
||||||
|
string = customPreprocessing(string)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if custom_stopwords is not None:
|
||||||
|
custom_stopwords = custom_stopwords
|
||||||
|
else:
|
||||||
|
custom_stopwords = []
|
||||||
|
|
||||||
|
if custom_words is not None:
|
||||||
|
custom_words = custom_words
|
||||||
|
else:
|
||||||
|
custom_words = []
|
||||||
|
|
||||||
|
if custom_symbols is not None:
|
||||||
|
custom_symbols = custom_symbols
|
||||||
|
else:
|
||||||
|
custom_symbols = []
|
||||||
|
|
||||||
|
|
||||||
|
# custom stoplist
|
||||||
|
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
||||||
|
stop_words = __import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS
|
||||||
|
|
||||||
|
stoplist =list(stop_words) + custom_stopwords
|
||||||
|
# List of symbols we don't care about either
|
||||||
|
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# get rid of newlines
|
||||||
|
string = string.strip().replace("\n", " ").replace("\r", " ")
|
||||||
|
|
||||||
|
# replace twitter
|
||||||
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||||||
|
string = mentionFinder.sub("MENTION", string)
|
||||||
|
|
||||||
|
# replace emails
|
||||||
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||||||
|
string = emailFinder.sub("EMAIL", string)
|
||||||
|
|
||||||
|
# replace urls
|
||||||
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||||||
|
string = urlFinder.sub("URL", string)
|
||||||
|
|
||||||
|
# replace HTML symbols
|
||||||
|
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# parse with spaCy
|
||||||
|
spacy_doc = PARSER(string)
|
||||||
|
tokens = []
|
||||||
|
|
||||||
|
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
||||||
|
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #IDEE NUM mit in den Corpus aufnehmen, aber fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||||||
|
|
||||||
|
# append Tokens to a list
|
||||||
|
for tok in spacy_doc:
|
||||||
|
if tok.pos_ in added_POS:
|
||||||
|
if lemmatize:
|
||||||
|
tokens.append(tok.lemma_.lower().strip())
|
||||||
|
else:
|
||||||
|
tokens.append(tok.text.lower().strip())
|
||||||
|
|
||||||
|
# add entities
|
||||||
|
if tok.ent_type_ in added_entities:
|
||||||
|
tokens.append(tok.text.lower())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# remove stopwords
|
||||||
|
tokens = [tok for tok in tokens if tok not in stoplist]
|
||||||
|
|
||||||
|
# remove symbols
|
||||||
|
tokens = [tok for tok in tokens if tok not in symbols]
|
||||||
|
|
||||||
|
# remove custom_words
|
||||||
|
tokens = [tok for tok in tokens if tok not in custom_words]
|
||||||
|
|
||||||
|
# remove single characters
|
||||||
|
tokens = [tok for tok in tokens if len(tok)>1]
|
||||||
|
|
||||||
|
# remove large strings of whitespace
|
||||||
|
remove_large_strings_of_whitespace(" ".join(tokens))
|
||||||
|
|
||||||
|
|
||||||
|
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
|
||||||
|
|
||||||
|
if normalize_synonyms:
|
||||||
|
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||||||
|
|
||||||
|
return " ".join(tokens)
|
||||||
|
|
||||||
|
|
||||||
|
def remove_large_strings_of_whitespace(sentence):
|
||||||
|
|
||||||
|
whitespaceFinder = re.compile(r'(\r\n|\r|\n)', re.IGNORECASE)
|
||||||
|
sentence = whitespaceFinder.sub(" ", sentence)
|
||||||
|
|
||||||
|
tokenlist = sentence.split(" ")
|
||||||
|
|
||||||
|
while "" in tokenlist:
|
||||||
|
tokenlist.remove("")
|
||||||
|
while " " in tokenlist:
|
||||||
|
tokenlist.remove(" ")
|
||||||
|
|
||||||
|
return " ".join(tokenlist)
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
def generateFromXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False,lemmatize=False):
|
||||||
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||||
|
root = tree.getroot()
|
||||||
|
|
||||||
|
for ticket in root:
|
||||||
|
metadata = {}
|
||||||
|
text = "ERROR"
|
||||||
|
for field in ticket:
|
||||||
|
if field.tag == textfield:
|
||||||
|
if clean:
|
||||||
|
text = cleanText_words(field.text,PARSER,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
||||||
|
else:
|
||||||
|
text = field.text
|
||||||
|
else:
|
||||||
|
#idee hier auch cleanen?
|
||||||
|
metadata[field.tag] = field.text
|
||||||
|
yield text, metadata
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
LANGUAGE = 'de'
|
||||||
|
#PARSER = de_core_news_md.load()
|
||||||
|
PARSER = spacy.load(LANGUAGE)
|
||||||
|
|
||||||
|
from old.textCleaning import TextCleaner
|
||||||
|
|
||||||
|
cleaner = TextCleaner(parser=PARSER)
|
||||||
|
|
||||||
|
|
||||||
|
def generateTextfromTicketXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False, lemmatize=False):
|
||||||
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||||
|
root = tree.getroot()
|
||||||
|
|
||||||
|
|
||||||
|
for ticket in root:
|
||||||
|
text = "ERROR"
|
||||||
|
for field in ticket:
|
||||||
|
if field.tag == textfield:
|
||||||
|
if clean:
|
||||||
|
text = cleaner.normalizeSynonyms(cleaner.removeWords(cleaner.keepPOSandENT(field.text))) #,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
||||||
|
else:
|
||||||
|
text = field.text
|
||||||
|
yield text
|
||||||
|
|
||||||
|
def generateMetadatafromTicketXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
|
||||||
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||||
|
|
||||||
|
root = tree.getroot()
|
||||||
|
|
||||||
|
for ticket in root:
|
||||||
|
metadata = {}
|
||||||
|
for field in ticket:
|
||||||
|
if field.tag != textfield:
|
||||||
|
if field.tag == "Zusammenfassung":
|
||||||
|
metadata[field.tag] = cleaner.removePunctuation(field.text)
|
||||||
|
elif field.tag == "Loesung":
|
||||||
|
metadata[field.tag] = cleaner.removeWhitespace(field.text)
|
||||||
|
else:
|
||||||
|
metadata[field.tag] = field.text
|
||||||
|
|
||||||
|
yield metadata
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
|
||||||
|
|
||||||
|
if custom_symbols is not None:
|
||||||
|
custom_symbols = custom_symbols
|
||||||
|
else:
|
||||||
|
custom_symbols = []
|
||||||
|
|
||||||
|
if keep is not None:
|
||||||
|
keep = keep
|
||||||
|
else:
|
||||||
|
keep = []
|
||||||
|
|
||||||
|
# List of symbols we don't care about
|
||||||
|
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
||||||
|
|
||||||
|
# parse with spaCy
|
||||||
|
spacy_doc = parser(string)
|
||||||
|
tokens = []
|
||||||
|
|
||||||
|
pos = ["NUM", "SPACE", "PUNCT"]
|
||||||
|
for p in keep:
|
||||||
|
pos.remove(p)
|
||||||
|
|
||||||
|
|
||||||
|
# append Tokens to a list
|
||||||
|
for tok in spacy_doc:
|
||||||
|
if tok.pos_ not in pos and tok.text not in symbols:
|
||||||
|
tokens.append(tok.text)
|
||||||
|
|
||||||
|
return " ".join(tokens)
|
||||||
|
|
||||||
|
def cleanText_words(string,parser=PARSER, custom_stopwords=None, custom_words=None, customPreprocessing=cleanText_symbols, lemmatize=False, normalize_synonyms=False):
|
||||||
|
|
||||||
|
# use preprocessing
|
||||||
|
if customPreprocessing is not None:
|
||||||
|
string = customPreprocessing(string)
|
||||||
|
|
||||||
|
if custom_stopwords is not None:
|
||||||
|
custom_stopwords = custom_stopwords
|
||||||
|
else:
|
||||||
|
custom_stopwords = []
|
||||||
|
|
||||||
|
if custom_words is not None:
|
||||||
|
custom_words = custom_words
|
||||||
|
else:
|
||||||
|
custom_words = []
|
||||||
|
|
||||||
|
|
||||||
|
# custom stoplist
|
||||||
|
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
||||||
|
stop_words = __import__("spacy." + parser.lang, globals(), locals(), ['object']).STOP_WORDS
|
||||||
|
|
||||||
|
stoplist =list(stop_words) + custom_stopwords
|
||||||
|
|
||||||
|
# replace twitter
|
||||||
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||||||
|
string = mentionFinder.sub("MENTION", string)
|
||||||
|
|
||||||
|
# replace emails
|
||||||
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||||||
|
string = emailFinder.sub("EMAIL", string)
|
||||||
|
|
||||||
|
# replace urls
|
||||||
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||||||
|
string = urlFinder.sub("URL", string)
|
||||||
|
|
||||||
|
# replace HTML symbols
|
||||||
|
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# parse with spaCy
|
||||||
|
spacy_doc = parser(string)
|
||||||
|
tokens = []
|
||||||
|
|
||||||
|
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
||||||
|
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||||||
|
|
||||||
|
# append Tokens to a list
|
||||||
|
for tok in spacy_doc:
|
||||||
|
if tok.pos_ in added_POS:
|
||||||
|
if lemmatize:
|
||||||
|
tokens.append(tok.lemma_.lower().strip())
|
||||||
|
else:
|
||||||
|
tokens.append(tok.text.lower().strip())
|
||||||
|
|
||||||
|
# add entities
|
||||||
|
if tok.ent_type_ in added_entities:
|
||||||
|
tokens.append(tok.text.lower())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# remove stopwords
|
||||||
|
tokens = [tok for tok in tokens if tok not in stoplist]
|
||||||
|
|
||||||
|
# remove custom_words
|
||||||
|
tokens = [tok for tok in tokens if tok not in custom_words]
|
||||||
|
|
||||||
|
# remove single characters
|
||||||
|
tokens = [tok for tok in tokens if len(tok)>1]
|
||||||
|
|
||||||
|
# remove large strings of whitespace
|
||||||
|
#remove_whitespace(" ".join(tokens))
|
||||||
|
|
||||||
|
|
||||||
|
#idee abkürzungen auflösen (v.a. TU -> Technische Universität): abkürzungsverezeichnis
|
||||||
|
|
||||||
|
if normalize_synonyms:
|
||||||
|
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||||||
|
|
||||||
|
return " ".join(set(tokens))
|
||||||
|
|
||||||
|
def cleanText_removeWhitespace(sentence):
|
||||||
|
whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
|
||||||
|
sentence = whitespaceFinder.sub(" ", sentence)
|
||||||
|
return sentence
|
||||||
|
|
||||||
|
#todo: preprocess pipe: removewhitespace, removePUNCT, resolveAbk, keepPOS, keepEnt, removeWords, normalizeSynonyms
|
||||||
|
|
||||||
|
|
||||||
|
def getFirstSynonym(word, thesaurus_gen):
|
||||||
|
|
||||||
|
word = word.lower()
|
||||||
|
|
||||||
|
|
||||||
|
# durch den thesaurrus iterieren
|
||||||
|
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||||||
|
|
||||||
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
||||||
|
if word == syn:
|
||||||
|
return getHauptform(syn_block, word)
|
||||||
|
else: # falls es ein satz ist
|
||||||
|
if word in syn:
|
||||||
|
return getHauptform(syn_block, word)
|
||||||
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
|
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
||||||
|
|
||||||
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
|
|
||||||
|
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
||||||
|
# nicht ausgeben, falls es in Klammern steht
|
||||||
|
for w in syn.split(" "):
|
||||||
|
if not re.match(r'\([^)]+\)', w):
|
||||||
|
return w
|
||||||
|
|
||||||
|
if default_return_first_Syn:
|
||||||
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||||||
|
for w in syn_block:
|
||||||
|
if not re.match(r'\([^)]+\)', w):
|
||||||
|
return w
|
||||||
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
"""
|
||||||
|
|
||||||
|
def printRandomDoc(textacyCorpus):
|
||||||
|
print()
|
||||||
|
|
||||||
|
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
||||||
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
||||||
|
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||||||
|
|
||||||
|
print()
|
||||||
|
|
||||||
|
####################'####################'####################'####################'####################'##############
|
||||||
|
# todo config-file
|
||||||
|
|
||||||
|
DATAPATH = "ticketSamples.xml"
|
||||||
|
DATAPATH_thesaurus = "openthesaurus.csv"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
normalize_Synonyms = True
|
||||||
|
clean = True
|
||||||
|
lemmatize = True
|
||||||
|
|
||||||
|
custom_words = ["grüßen", "fragen"]
|
||||||
|
|
||||||
|
####################'####################'####################'####################'####################'##############
|
||||||
|
|
||||||
|
|
||||||
|
## files to textacy-corpus
|
||||||
|
textacyCorpus = textacy.Corpus(PARSER)
|
||||||
|
|
||||||
|
print("add texts to textacy-corpus...")
|
||||||
|
textacyCorpus.add_texts(texts=generateTextfromTicketXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromTicketXML(DATAPATH))
|
||||||
|
|
||||||
|
|
||||||
|
#for txt, dic in generateFromXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize):
|
||||||
|
# textacyCorpus.add_text(txt,dic)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
for doc in textacyCorpus:
|
||||||
|
print(doc.metadata)
|
||||||
|
print(doc.text)
|
||||||
|
|
||||||
|
#print(textacyCorpus[2].text)
|
||||||
|
#printRandomDoc(textacyCorpus)
|
||||||
|
#print(textacyCorpus[len(textacyCorpus)-1].text)
|
||||||
|
|
||||||
|
|
||||||
|
print()
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -118,7 +118,7 @@ def keepinDoc(doc, toKeep=None):
|
||||||
return " ".join([tok.text for tok in doc if tok.pos_ in toKeep or tok.ent_type_ in toKeep or tok.tag_ in toKeep])
|
return " ".join([tok.text for tok in doc if tok.pos_ in toKeep or tok.ent_type_ in toKeep or tok.tag_ in toKeep])
|
||||||
|
|
||||||
|
|
||||||
#todo https://mathieularose.com/function-composition-in-python/
|
# https://mathieularose.com/function-composition-in-python/
|
||||||
parser = spacy.load('de')
|
parser = spacy.load('de')
|
||||||
cleaner = TextCleaner(parser)
|
cleaner = TextCleaner(parser)
|
||||||
corpus_raw = textacy.Corpus(parser)
|
corpus_raw = textacy.Corpus(parser)
|
|
@ -106,10 +106,6 @@ class TextCleaner:
|
||||||
|
|
||||||
return " ".join(tokens)
|
return " ".join(tokens)
|
||||||
|
|
||||||
def resolveAbbreviations(self,string):
|
|
||||||
return string #todo
|
|
||||||
|
|
||||||
|
|
||||||
def keepPOSandENT(self, string, customPOS=None, customEnt=None, remove=None):
|
def keepPOSandENT(self, string, customPOS=None, customEnt=None, remove=None):
|
||||||
|
|
||||||
pos2keep = self.pos2keep + (customPOS if customPOS is not None else [])
|
pos2keep = self.pos2keep + (customPOS if customPOS is not None else [])
|
||||||
|
@ -142,6 +138,10 @@ class TextCleaner:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def resolveAbbreviations(self,string):
|
||||||
|
return string #todo
|
||||||
def removeWords(self,string, custom_words=None, keep=None, lemmatize=False):
|
def removeWords(self,string, custom_words=None, keep=None, lemmatize=False):
|
||||||
|
|
||||||
wordlist = self.stop_words + (custom_words if custom_words is not None else [])
|
wordlist = self.stop_words + (custom_words if custom_words is not None else [])
|
||||||
|
@ -176,11 +176,6 @@ class TextCleaner:
|
||||||
return " ".join(set(tokens))
|
return " ".join(set(tokens))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def normalizeSynonyms(self, string, default_return_first_Syn=False):
|
def normalizeSynonyms(self, string, default_return_first_Syn=False):
|
||||||
# parse with spaCy
|
# parse with spaCy
|
||||||
spacy_doc = self.parser(string)
|
spacy_doc = self.parser(string)
|
||||||
|
@ -190,8 +185,6 @@ class TextCleaner:
|
||||||
|
|
||||||
return " ".join(set(tokens))
|
return " ".join(set(tokens))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def getFirstSynonym(self,word, thesaurus, default_return_first_Syn=False):
|
def getFirstSynonym(self,word, thesaurus, default_return_first_Syn=False):
|
||||||
if not isinstance(word, str):
|
if not isinstance(word, str):
|
||||||
return word
|
return word
|
|
@ -1,5 +1,5 @@
|
||||||
TH;Technische_Universität (Hauptform);Technische Hochschule;TU
|
|
||||||
Passwort (Hauptform);Kodewort;Schlüsselwort;Zugangscode;Kennwort (Hauptform);Geheimcode;Losung;Codewort;Zugangswort;Losungswort;Parole
|
Passwort (Hauptform);Kodewort;Schlüsselwort;Zugangscode;Kennwort (Hauptform);Geheimcode;Losung;Codewort;Zugangswort;Losungswort;Parole
|
||||||
|
TH;Technische_Universität (Hauptform);Technische Hochschule;TU
|
||||||
Fission;Kernfission;Kernspaltung;Atomspaltung
|
Fission;Kernfission;Kernspaltung;Atomspaltung
|
||||||
Wiederaufnahme;Fortführung
|
Wiederaufnahme;Fortführung
|
||||||
davonfahren;abdüsen (ugs.);aufbrechen;abfliegen;abfahren;(von etwas) fortfahren;abreisen;wegfahren;wegfliegen
|
davonfahren;abdüsen (ugs.);aufbrechen;abfliegen;abfahren;(von etwas) fortfahren;abreisen;wegfahren;wegfliegen
|
||||||
|
|
Can't render this file because it is too large.
|
511
preprocessing.py
511
preprocessing.py
|
@ -1,389 +1,190 @@
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import csv
|
import csv
|
||||||
import random
|
import functools
|
||||||
import re
|
import re
|
||||||
|
|
||||||
import spacy
|
import spacy
|
||||||
import textacy
|
|
||||||
import sys
|
import sys
|
||||||
|
import textacy
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
"""
|
import io
|
||||||
import keras
|
|
||||||
import numpy as np
|
|
||||||
from keras.layers import Dense, SimpleRNN, LSTM, TimeDistributed, Dropout
|
|
||||||
from keras.models import Sequential
|
|
||||||
import keras.backend as K
|
|
||||||
"""
|
|
||||||
csv.field_size_limit(sys.maxsize)
|
csv.field_size_limit(sys.maxsize)
|
||||||
|
|
||||||
"""
|
|
||||||
def getFirstSynonym(word, thesaurus_gen):
|
|
||||||
|
|
||||||
word = word.lower()
|
|
||||||
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
|
|
||||||
|
|
||||||
|
|
||||||
# durch den thesaurrus iterieren
|
# Load the configuration file
|
||||||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
import configparser as ConfigParser
|
||||||
|
config = ConfigParser.ConfigParser()
|
||||||
# durch den synonymblock iterieren
|
with open("config.ini") as f:
|
||||||
for syn in syn_block:
|
config.read_file(f)
|
||||||
syn = syn.lower().split(" ") if not re.match(r'\A[\w-]+\Z', syn) else syn # aus synonym mach liste (um evtl. sätze zu identifieziren)
|
|
||||||
|
|
||||||
# falls das wort in dem synonym enthalten ist (also == einem Wort in der liste ist)
|
|
||||||
if word in syn:
|
|
||||||
|
|
||||||
# Hauptform suchen
|
|
||||||
if "auptform" in syn:
|
|
||||||
# nicht ausgeben, falls es in Klammern steht
|
|
||||||
for w in syn:
|
|
||||||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
|
||||||
return w
|
|
||||||
|
|
||||||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
|
||||||
if len(syn) == 1:
|
|
||||||
w = syn[0]
|
|
||||||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
|
||||||
return w
|
|
||||||
|
|
||||||
return word # zur Not die eingabe ausgeben
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
PARSER = spacy.load(config.get("default","language"))
|
||||||
"""
|
corpus = textacy.Corpus(PARSER)
|
||||||
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False, normalize_synonyms=False):
|
|
||||||
|
|
||||||
# use preprocessing
|
thesauruspath = config.get("default","thesauruspath")
|
||||||
if customPreprocessing is not None:
|
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
||||||
string = customPreprocessing(string)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if custom_stopwords is not None:
|
def compose(*functions):
|
||||||
custom_stopwords = custom_stopwords
|
def compose2(f, g):
|
||||||
else:
|
return lambda x: f(g(x))
|
||||||
custom_stopwords = []
|
return functools.reduce(compose2, functions, lambda x: x)
|
||||||
|
|
||||||
if custom_words is not None:
|
|
||||||
custom_words = custom_words
|
|
||||||
else:
|
|
||||||
custom_words = []
|
|
||||||
|
|
||||||
if custom_symbols is not None:
|
|
||||||
custom_symbols = custom_symbols
|
|
||||||
else:
|
|
||||||
custom_symbols = []
|
|
||||||
|
|
||||||
|
|
||||||
# custom stoplist
|
################ generate Content and Metadata ########################
|
||||||
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
|
||||||
stop_words = __import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS
|
|
||||||
|
|
||||||
stoplist =list(stop_words) + custom_stopwords
|
def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
|
||||||
# List of symbols we don't care about either
|
"""
|
||||||
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
generates strings from XML
|
||||||
|
:param path2xml:
|
||||||
|
:param main_textfield:
|
||||||
|
:param cleaning_function:
|
||||||
|
:yields strings
|
||||||
|
"""
|
||||||
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||||
|
root = tree.getroot()
|
||||||
|
|
||||||
|
for ticket in root:
|
||||||
|
for field in ticket:
|
||||||
|
if field.tag == main_textfield:
|
||||||
|
yield field.text
|
||||||
|
|
||||||
|
def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']):
|
||||||
# get rid of newlines
|
|
||||||
string = string.strip().replace("\n", " ").replace("\r", " ")
|
|
||||||
|
|
||||||
# replace twitter
|
|
||||||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
||||||
string = mentionFinder.sub("MENTION", string)
|
|
||||||
|
|
||||||
# replace emails
|
|
||||||
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
||||||
string = emailFinder.sub("EMAIL", string)
|
|
||||||
|
|
||||||
# replace urls
|
|
||||||
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
||||||
string = urlFinder.sub("URL", string)
|
|
||||||
|
|
||||||
# replace HTML symbols
|
|
||||||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# parse with spaCy
|
|
||||||
spacy_doc = PARSER(string)
|
|
||||||
tokens = []
|
|
||||||
|
|
||||||
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
|
||||||
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #IDEE NUM mit in den Corpus aufnehmen, aber fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
|
||||||
|
|
||||||
# append Tokens to a list
|
|
||||||
for tok in spacy_doc:
|
|
||||||
if tok.pos_ in added_POS:
|
|
||||||
if lemmatize:
|
|
||||||
tokens.append(tok.lemma_.lower().strip())
|
|
||||||
else:
|
|
||||||
tokens.append(tok.text.lower().strip())
|
|
||||||
|
|
||||||
# add entities
|
|
||||||
if tok.ent_type_ in added_entities:
|
|
||||||
tokens.append(tok.text.lower())
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# remove stopwords
|
|
||||||
tokens = [tok for tok in tokens if tok not in stoplist]
|
|
||||||
|
|
||||||
# remove symbols
|
|
||||||
tokens = [tok for tok in tokens if tok not in symbols]
|
|
||||||
|
|
||||||
# remove custom_words
|
|
||||||
tokens = [tok for tok in tokens if tok not in custom_words]
|
|
||||||
|
|
||||||
# remove single characters
|
|
||||||
tokens = [tok for tok in tokens if len(tok)>1]
|
|
||||||
|
|
||||||
# remove large strings of whitespace
|
|
||||||
remove_large_strings_of_whitespace(" ".join(tokens))
|
|
||||||
|
|
||||||
|
|
||||||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
|
|
||||||
|
|
||||||
if normalize_synonyms:
|
|
||||||
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
|
||||||
|
|
||||||
return " ".join(tokens)
|
|
||||||
|
|
||||||
|
|
||||||
def remove_large_strings_of_whitespace(sentence):
|
|
||||||
|
|
||||||
whitespaceFinder = re.compile(r'(\r\n|\r|\n)', re.IGNORECASE)
|
|
||||||
sentence = whitespaceFinder.sub(" ", sentence)
|
|
||||||
|
|
||||||
tokenlist = sentence.split(" ")
|
|
||||||
|
|
||||||
while "" in tokenlist:
|
|
||||||
tokenlist.remove("")
|
|
||||||
while " " in tokenlist:
|
|
||||||
tokenlist.remove(" ")
|
|
||||||
|
|
||||||
return " ".join(tokenlist)
|
|
||||||
"""
|
|
||||||
"""
|
|
||||||
def generateFromXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False,lemmatize=False):
|
|
||||||
import xml.etree.ElementTree as ET
|
|
||||||
|
|
||||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||||
root = tree.getroot()
|
root = tree.getroot()
|
||||||
|
|
||||||
for ticket in root:
|
for ticket in root:
|
||||||
metadata = {}
|
metadata = {}
|
||||||
text = "ERROR"
|
|
||||||
for field in ticket:
|
for field in ticket:
|
||||||
if field.tag == textfield:
|
if field.tag not in leave_out:
|
||||||
if clean:
|
|
||||||
text = cleanText_words(field.text,PARSER,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
|
||||||
else:
|
|
||||||
text = field.text
|
|
||||||
else:
|
|
||||||
#idee hier auch cleanen?
|
|
||||||
metadata[field.tag] = field.text
|
|
||||||
yield text, metadata
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
LANGUAGE = 'de'
|
|
||||||
#PARSER = de_core_news_md.load()
|
|
||||||
PARSER = spacy.load(LANGUAGE)
|
|
||||||
|
|
||||||
from textCleaning import TextCleaner
|
|
||||||
|
|
||||||
cleaner = TextCleaner(parser=PARSER)
|
|
||||||
|
|
||||||
|
|
||||||
def generateTextfromTicketXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False, lemmatize=False):
|
|
||||||
import xml.etree.ElementTree as ET
|
|
||||||
|
|
||||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
||||||
root = tree.getroot()
|
|
||||||
|
|
||||||
|
|
||||||
for ticket in root:
|
|
||||||
text = "ERROR"
|
|
||||||
for field in ticket:
|
|
||||||
if field.tag == textfield:
|
|
||||||
if clean:
|
|
||||||
text = cleaner.normalizeSynonyms(cleaner.removeWords(cleaner.keepPOSandENT(field.text))) #,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
|
||||||
else:
|
|
||||||
text = field.text
|
|
||||||
yield text
|
|
||||||
|
|
||||||
def generateMetadatafromTicketXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
|
|
||||||
import xml.etree.ElementTree as ET
|
|
||||||
|
|
||||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
||||||
|
|
||||||
root = tree.getroot()
|
|
||||||
|
|
||||||
for ticket in root:
|
|
||||||
metadata = {}
|
|
||||||
for field in ticket:
|
|
||||||
if field.tag != textfield:
|
|
||||||
if field.tag == "Zusammenfassung":
|
|
||||||
metadata[field.tag] = cleaner.removePunctuation(field.text)
|
|
||||||
elif field.tag == "Loesung":
|
|
||||||
metadata[field.tag] = cleaner.removeWhitespace(field.text)
|
|
||||||
else:
|
|
||||||
metadata[field.tag] = field.text
|
metadata[field.tag] = field.text
|
||||||
|
|
||||||
yield metadata
|
yield metadata
|
||||||
|
|
||||||
|
def printRandomDoc(textacyCorpus):
|
||||||
|
import random
|
||||||
|
print()
|
||||||
|
|
||||||
|
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
||||||
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
||||||
|
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||||||
|
|
||||||
|
print()
|
||||||
|
|
||||||
"""
|
################ Preprocess#########################
|
||||||
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
|
|
||||||
|
|
||||||
if custom_symbols is not None:
|
def processDictstream(dictstream, funcdict, parser=PARSER):
|
||||||
custom_symbols = custom_symbols
|
for dic in dictstream:
|
||||||
|
result = {}
|
||||||
|
for key, value in dic.items():
|
||||||
|
if key in funcdict:
|
||||||
|
result[key] = funcdict[key](parser(value))
|
||||||
else:
|
else:
|
||||||
custom_symbols = []
|
result[key] = key
|
||||||
|
yield result
|
||||||
|
|
||||||
if keep is not None:
|
def processTextstream(textstream, func, parser=PARSER):
|
||||||
keep = keep
|
# input str-stream output str-stream
|
||||||
else:
|
pipe = parser.pipe(textstream)
|
||||||
keep = []
|
|
||||||
|
|
||||||
# List of symbols we don't care about
|
for doc in pipe:
|
||||||
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
yield func(doc)
|
||||||
|
|
||||||
# parse with spaCy
|
|
||||||
spacy_doc = parser(string)
|
|
||||||
tokens = []
|
|
||||||
|
|
||||||
pos = ["NUM", "SPACE", "PUNCT"]
|
|
||||||
for p in keep:
|
|
||||||
pos.remove(p)
|
|
||||||
|
|
||||||
|
|
||||||
# append Tokens to a list
|
|
||||||
for tok in spacy_doc:
|
|
||||||
if tok.pos_ not in pos and tok.text not in symbols:
|
|
||||||
tokens.append(tok.text)
|
|
||||||
|
|
||||||
return " ".join(tokens)
|
|
||||||
|
|
||||||
def cleanText_words(string,parser=PARSER, custom_stopwords=None, custom_words=None, customPreprocessing=cleanText_symbols, lemmatize=False, normalize_synonyms=False):
|
|
||||||
|
|
||||||
# use preprocessing
|
|
||||||
if customPreprocessing is not None:
|
|
||||||
string = customPreprocessing(string)
|
|
||||||
|
|
||||||
if custom_stopwords is not None:
|
|
||||||
custom_stopwords = custom_stopwords
|
|
||||||
else:
|
|
||||||
custom_stopwords = []
|
|
||||||
|
|
||||||
if custom_words is not None:
|
|
||||||
custom_words = custom_words
|
|
||||||
else:
|
|
||||||
custom_words = []
|
|
||||||
|
|
||||||
|
|
||||||
# custom stoplist
|
|
||||||
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
|
||||||
stop_words = __import__("spacy." + parser.lang, globals(), locals(), ['object']).STOP_WORDS
|
|
||||||
|
|
||||||
stoplist =list(stop_words) + custom_stopwords
|
|
||||||
|
|
||||||
# replace twitter
|
|
||||||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
||||||
string = mentionFinder.sub("MENTION", string)
|
|
||||||
|
|
||||||
# replace emails
|
|
||||||
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
||||||
string = emailFinder.sub("EMAIL", string)
|
|
||||||
|
|
||||||
# replace urls
|
|
||||||
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
||||||
string = urlFinder.sub("URL", string)
|
|
||||||
|
|
||||||
# replace HTML symbols
|
|
||||||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# parse with spaCy
|
|
||||||
spacy_doc = parser(string)
|
|
||||||
tokens = []
|
|
||||||
|
|
||||||
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
def keepOnlyPOS(pos_list, parser=PARSER):
|
||||||
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
return lambda doc : parser(" ".join([tok.text for tok in doc if tok.pos_ in pos_list]))
|
||||||
|
|
||||||
# append Tokens to a list
|
def removeAllPOS(pos_list, parser=PARSER):
|
||||||
for tok in spacy_doc:
|
return lambda doc: parser(" ".join([tok.text for tok in doc if tok.pos_ not in pos_list]))
|
||||||
if tok.pos_ in added_POS:
|
|
||||||
if lemmatize:
|
|
||||||
tokens.append(tok.lemma_.lower().strip())
|
|
||||||
else:
|
|
||||||
tokens.append(tok.text.lower().strip())
|
|
||||||
|
|
||||||
# add entities
|
def keepOnlyENT(ent_list,parser=PARSER):
|
||||||
if tok.ent_type_ in added_entities:
|
return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ in ent_list]))
|
||||||
tokens.append(tok.text.lower())
|
|
||||||
|
def removeAllENT(ent_list, parser=PARSER):
|
||||||
|
return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ not in ent_list]))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# remove stopwords
|
|
||||||
tokens = [tok for tok in tokens if tok not in stoplist]
|
|
||||||
|
|
||||||
# remove custom_words
|
doc2Set = lambda doc: str(set([tok.text for tok in doc]))
|
||||||
tokens = [tok for tok in tokens if tok not in custom_words]
|
doc2String = lambda doc : doc.text
|
||||||
|
|
||||||
# remove single characters
|
|
||||||
tokens = [tok for tok in tokens if len(tok)>1]
|
|
||||||
|
|
||||||
# remove large strings of whitespace
|
|
||||||
#remove_whitespace(" ".join(tokens))
|
|
||||||
|
|
||||||
|
|
||||||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität): abkürzungsverezeichnis
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||||||
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||||||
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||||||
|
|
||||||
if normalize_synonyms:
|
def replaceURLs(replace_with="URL",parser=PARSER):
|
||||||
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
#return lambda doc: parser(textacy.preprocess.replace_urls(doc.text,replace_with=replace_with))
|
||||||
|
return lambda doc: parser(urlFinder.sub(replace_with,doc.text))
|
||||||
|
|
||||||
return " ".join(set(tokens))
|
def replaceEmails(replace_with="EMAIL",parser=PARSER):
|
||||||
|
#return lambda doc: parser(textacy.preprocess.replace_emails(doc.text,replace_with=replace_with))
|
||||||
|
return lambda doc : parser(emailFinder.sub(replace_with, doc.text))
|
||||||
|
|
||||||
def cleanText_removeWhitespace(sentence):
|
def replaceTwitterMentions(replace_with="TWITTER_MENTION",parser=PARSER):
|
||||||
whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
|
return lambda doc : parser(mentionFinder.sub(replace_with, doc.text))
|
||||||
sentence = whitespaceFinder.sub(" ", sentence)
|
|
||||||
return sentence
|
|
||||||
|
|
||||||
#todo: preprocess pipe: removewhitespace, removePUNCT, resolveAbk, keepPOS, keepEnt, removeWords, normalizeSynonyms
|
def replaceNumbers(replace_with="NUMBER",parser=PARSER):
|
||||||
|
return lambda doc: parser(textacy.preprocess.replace_numbers(doc.text, replace_with=replace_with))
|
||||||
|
|
||||||
|
def replacePhonenumbers(replace_with="PHONE",parser=PARSER):
|
||||||
|
return lambda doc: parser(textacy.preprocess.replace_phone_numbers(doc.text, replace_with=replace_with))
|
||||||
|
|
||||||
|
|
||||||
def getFirstSynonym(word, thesaurus_gen):
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def resolveAbbreviations(parser=PARSER):
|
||||||
|
pass #todo
|
||||||
|
|
||||||
|
|
||||||
|
def removeWords(words, keep=None,parser=PARSER):
|
||||||
|
if hasattr(keep, '__iter__'):
|
||||||
|
for k in keep:
|
||||||
|
try:
|
||||||
|
words.remove(k)
|
||||||
|
except ValueError:
|
||||||
|
pass
|
||||||
|
return lambda doc : parser(" ".join([tok.text for tok in doc if tok.lower_ not in words]))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
|
||||||
|
#return lambda doc : parser(" ".join([tok.lower_ for tok in doc]))
|
||||||
|
return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc]))
|
||||||
|
|
||||||
|
def getFirstSynonym(word, thesaurus, default_return_first_Syn=False):
|
||||||
|
if not isinstance(word, str):
|
||||||
|
return str(word)
|
||||||
|
|
||||||
word = word.lower()
|
word = word.lower()
|
||||||
|
|
||||||
|
|
||||||
# durch den thesaurrus iterieren
|
# durch den thesaurrus iterieren
|
||||||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
||||||
|
|
||||||
for syn in syn_block:
|
for syn in syn_block:
|
||||||
syn = syn.lower()
|
syn = syn.lower()
|
||||||
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
||||||
if word == syn:
|
if word == syn:
|
||||||
return getHauptform(syn_block, word)
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
||||||
else: # falls es ein satz ist
|
else: # falls es ein satz ist
|
||||||
if word in syn:
|
if word in syn:
|
||||||
return getHauptform(syn_block, word)
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
||||||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
return str(word) # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
||||||
|
|
||||||
for syn in syn_block:
|
for syn in syn_block:
|
||||||
syn = syn.lower()
|
syn = syn.lower()
|
||||||
|
|
||||||
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
||||||
# nicht ausgeben, falls es in Klammern steht
|
# nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus
|
||||||
for w in syn.split(" "):
|
for w in syn.split(" "):
|
||||||
if not re.match(r'\([^)]+\)', w):
|
if not re.match(r'\([^)]+\)', w):
|
||||||
return w
|
return w
|
||||||
|
@ -394,58 +195,58 @@ def getHauptform(syn_block, word, default_return_first_Syn=False):
|
||||||
if not re.match(r'\([^)]+\)', w):
|
if not re.match(r'\([^)]+\)', w):
|
||||||
return w
|
return w
|
||||||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
"""
|
|
||||||
|
|
||||||
def printRandomDoc(textacyCorpus):
|
|
||||||
print()
|
|
||||||
|
|
||||||
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
||||||
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
||||||
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
||||||
|
|
||||||
print()
|
|
||||||
|
|
||||||
####################'####################'####################'####################'####################'##############
|
|
||||||
# todo config-file
|
|
||||||
|
|
||||||
import de_core_news_md
|
|
||||||
DATAPATH = "ticketSamples.xml"
|
|
||||||
DATAPATH_thesaurus = "openthesaurus.csv"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
normalize_Synonyms = True
|
stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) + config.get("preprocessing","custom_words").split(",")
|
||||||
clean = True
|
|
||||||
lemmatize = True
|
path2xml = config.get("default","path2xml")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
content_generator = generateMainTextfromTicketXML(path2xml)
|
||||||
|
metadata_generator = generateMetadatafromTicketXML(path2xml)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
ents = config.get("preprocessing","ents").split(",")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
clean_in_content=compose(
|
||||||
|
|
||||||
|
doc2String,
|
||||||
|
#normalizeSynonyms(default_return_first_Syn=config.get("preprocessing","default_return_first_Syn")),
|
||||||
|
replaceEmails(),
|
||||||
|
replaceURLs(),
|
||||||
|
replaceTwitterMentions(),
|
||||||
|
removeWords(stop_words),
|
||||||
|
#removeAllPOS(["SPACE","PUNCT"]),
|
||||||
|
#removeAllENT(ents),
|
||||||
|
keepOnlyPOS(['NOUN'])
|
||||||
|
)
|
||||||
|
|
||||||
|
clean_in_meta = {
|
||||||
|
"Loesung":removeAllPOS(["SPACE"]),
|
||||||
|
"Zusammenfassung":removeAllPOS(["SPACE","PUNCT"])
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
contentStream = processTextstream(content_generator, func=clean_in_content)
|
||||||
|
metaStream = processDictstream(metadata_generator, funcdict=clean_in_meta)
|
||||||
|
|
||||||
|
|
||||||
|
corpus.add_texts(contentStream,metaStream)
|
||||||
|
print(corpus[0].text)
|
||||||
|
printRandomDoc(corpus)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
custom_words = ["grüßen", "fragen"]
|
|
||||||
|
|
||||||
####################'####################'####################'####################'####################'##############
|
|
||||||
|
|
||||||
|
|
||||||
## files to textacy-corpus
|
|
||||||
textacyCorpus = textacy.Corpus(PARSER)
|
|
||||||
|
|
||||||
print("add texts to textacy-corpus...")
|
|
||||||
textacyCorpus.add_texts(texts=generateTextfromTicketXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromTicketXML(DATAPATH))
|
|
||||||
|
|
||||||
|
|
||||||
#for txt, dic in generateFromXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize):
|
|
||||||
# textacyCorpus.add_text(txt,dic)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for doc in textacyCorpus:
|
|
||||||
print(doc.metadata)
|
|
||||||
print(doc.text)
|
|
||||||
|
|
||||||
#print(textacyCorpus[2].text)
|
|
||||||
#printRandomDoc(textacyCorpus)
|
|
||||||
#print(textacyCorpus[len(textacyCorpus)-1].text)
|
|
||||||
|
|
||||||
|
|
||||||
print()
|
|
||||||
print()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue