openthesaurus refactored.
This commit is contained in:
parent
bb9edcff25
commit
68d8115344
|
@ -1,3 +1,4 @@
|
||||||
|
Kodewort;Schlüsselwort;Zugangscode;Passwort (Hauptform);Kennwort (Hauptform);Geheimcode;Losung;Codewort;Zugangswort;Losungswort;Parole
|
||||||
Fission;Kernfission;Kernspaltung;Atomspaltung
|
Fission;Kernfission;Kernspaltung;Atomspaltung
|
||||||
Wiederaufnahme;Fortführung
|
Wiederaufnahme;Fortführung
|
||||||
davonfahren;abdüsen (ugs.);aufbrechen;abfliegen;abfahren;(von etwas) fortfahren;abreisen;wegfahren;wegfliegen
|
davonfahren;abdüsen (ugs.);aufbrechen;abfliegen;abfahren;(von etwas) fortfahren;abreisen;wegfahren;wegfliegen
|
||||||
|
@ -2182,7 +2183,6 @@ Spitzenklöppel (Handarbeit);Glockenklöppel;Klöppel
|
||||||
gutartig;benigne (fachspr.)
|
gutartig;benigne (fachspr.)
|
||||||
Beutelratte;Taschenratte
|
Beutelratte;Taschenratte
|
||||||
rollen;kollern (ugs.);kullern;kugeln
|
rollen;kollern (ugs.);kullern;kugeln
|
||||||
Kodewort;Schlüsselwort;Zugangscode;Kennwort (Hauptform);Geheimcode;Losung;Codewort;Zugangswort;Passwort (Hauptform);Losungswort;Parole
|
|
||||||
packen;einpacken
|
packen;einpacken
|
||||||
Ratschluss;Urteil;Wille;Entscheidung;Entschlossenheit;Beschluss;das letzte Wort (ugs.);Entschluss;Entscheid (schweiz.)
|
Ratschluss;Urteil;Wille;Entscheidung;Entschlossenheit;Beschluss;das letzte Wort (ugs.);Entschluss;Entscheid (schweiz.)
|
||||||
dreckig machen;versiffen;beschmutzen;verschmutzen
|
dreckig machen;versiffen;beschmutzen;verschmutzen
|
||||||
|
|
Can't render this file because it is too large.
|
110
preprocessing.py
110
preprocessing.py
|
@ -20,12 +20,14 @@ csv.field_size_limit(sys.maxsize)
|
||||||
|
|
||||||
def printRandomDoc(textacyCorpus):
|
def printRandomDoc(textacyCorpus):
|
||||||
print()
|
print()
|
||||||
|
|
||||||
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
||||||
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
||||||
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||||||
|
|
||||||
print()
|
print()
|
||||||
|
|
||||||
|
"""
|
||||||
def getFirstSynonym(word, thesaurus_gen):
|
def getFirstSynonym(word, thesaurus_gen):
|
||||||
|
|
||||||
word = word.lower()
|
word = word.lower()
|
||||||
|
@ -56,10 +58,9 @@ def getFirstSynonym(word, thesaurus_gen):
|
||||||
return w
|
return w
|
||||||
|
|
||||||
return word # zur Not die eingabe ausgeben
|
return word # zur Not die eingabe ausgeben
|
||||||
|
"""
|
||||||
|
|
||||||
|
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False, normalize_synonyms=False):
|
||||||
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False):
|
|
||||||
import re
|
|
||||||
|
|
||||||
# use preprocessing
|
# use preprocessing
|
||||||
if customPreprocessing is not None:
|
if customPreprocessing is not None:
|
||||||
|
@ -156,17 +157,14 @@ def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=No
|
||||||
tokens.remove("\n")
|
tokens.remove("\n")
|
||||||
while "\n\n" in tokens:
|
while "\n\n" in tokens:
|
||||||
tokens.remove("\n\n")
|
tokens.remove("\n\n")
|
||||||
"""
|
|
||||||
tokenz = []
|
#TODO abkürzungen auflösen (v.a. TU -> Technische Universität)
|
||||||
for tok in tokens:
|
|
||||||
tokenz.append(str(getFirstSynonym(tok,THESAURUS_gen)))
|
if normalize_synonyms:
|
||||||
tokens = tokenz
|
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||||||
"""
|
|
||||||
tokens = [str(getFirstSynonym(tok,THESAURUS_gen)) for tok in tokens]
|
|
||||||
|
|
||||||
return " ".join(tokens)
|
return " ".join(tokens)
|
||||||
|
|
||||||
|
|
||||||
def generateTextfromXML(path2xml, clean=True, textfield='Beschreibung'):
|
def generateTextfromXML(path2xml, clean=True, textfield='Beschreibung'):
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
|
@ -196,7 +194,7 @@ def generateMetadatafromXML(path2xml, keys=["Loesung","Kategorie","Zusammenfassu
|
||||||
|
|
||||||
yield metadata
|
yield metadata
|
||||||
|
|
||||||
def generateFromXML(path2xml, clean=True, textfield='Beschreibung'):
|
def generateFromXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False):
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||||
|
@ -208,17 +206,55 @@ def generateFromXML(path2xml, clean=True, textfield='Beschreibung'):
|
||||||
for field in ticket:
|
for field in ticket:
|
||||||
if field.tag == textfield:
|
if field.tag == textfield:
|
||||||
if clean:
|
if clean:
|
||||||
text = cleanText(field.text)
|
text = cleanText(field.text,normalize_synonyms=normalize_Synonyms,lemmatize=False)
|
||||||
else:
|
else:
|
||||||
text = field.text
|
text = field.text
|
||||||
else:
|
else:
|
||||||
|
#todo hier auch cleanen?
|
||||||
metadata[field.tag] = field.text
|
metadata[field.tag] = field.text
|
||||||
yield text, metadata
|
yield text, metadata
|
||||||
|
|
||||||
|
def getFirstSynonym(word, thesaurus_gen):
|
||||||
|
|
||||||
|
word = word.lower()
|
||||||
|
|
||||||
|
|
||||||
|
# durch den thesaurrus iterieren
|
||||||
|
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||||||
|
|
||||||
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
||||||
|
if word == syn:
|
||||||
|
return getHauptform(syn_block, word)
|
||||||
|
else: # falls es ein satz ist
|
||||||
|
if word in syn:
|
||||||
|
return getHauptform(syn_block, word)
|
||||||
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
|
|
||||||
|
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
||||||
|
|
||||||
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
|
|
||||||
|
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
||||||
|
# nicht ausgeben, falls es in Klammern steht
|
||||||
|
for w in syn.split(" "):
|
||||||
|
if not re.match(r'\([^)]+\)', w):
|
||||||
|
return w
|
||||||
|
|
||||||
|
if default_return_first_Syn:
|
||||||
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||||||
|
for w in syn_block:
|
||||||
|
if not re.match(r'\([^)]+\)', w):
|
||||||
|
return w
|
||||||
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
|
|
||||||
####################'####################'####################'####################'####################'##############
|
####################'####################'####################'####################'####################'##############
|
||||||
|
|
||||||
|
import de_core_news_md
|
||||||
DATAPATH = "ticketSamples.xml"
|
DATAPATH = "ticketSamples.xml"
|
||||||
DATAPATH_thesaurus = "openthesaurus.csv"
|
DATAPATH_thesaurus = "openthesaurus.csv"
|
||||||
|
|
||||||
|
@ -227,8 +263,11 @@ LANGUAGE = 'de'
|
||||||
|
|
||||||
####################'####################'####################'####################'####################'##############
|
####################'####################'####################'####################'####################'##############
|
||||||
|
|
||||||
PARSER = spacy.load(LANGUAGE)
|
PARSER = de_core_news_md.load()#spacy.load(LANGUAGE)
|
||||||
THESAURUS_gen = textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";") # generator [[a,b,c,..],[a,b,c,..],...]
|
|
||||||
|
THESAURUS_list=list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";")) ## !!!!!! list wichtig, da sonst nicht die gleichen Synonyme zurückgegeben werden, weil der generator während der laufzeit pickt
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## files to textacy-corpus
|
## files to textacy-corpus
|
||||||
|
@ -236,27 +275,40 @@ textacyCorpus = textacy.Corpus(PARSER)
|
||||||
|
|
||||||
print("add texts to textacy-corpus...")
|
print("add texts to textacy-corpus...")
|
||||||
#textacyCorpus.add_texts(texts=generateTextfromXML(DATAPATH), metadatas=generateMetadatafromXML(DATAPATH))
|
#textacyCorpus.add_texts(texts=generateTextfromXML(DATAPATH), metadatas=generateMetadatafromXML(DATAPATH))
|
||||||
for txt, dic in generateFromXML(DATAPATH):
|
for txt, dic in generateFromXML(DATAPATH,normalize_Synonyms=True,clean=True):
|
||||||
textacyCorpus.add_text(txt,dic)
|
textacyCorpus.add_text(txt,dic)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
for doc in textacyCorpus:
|
||||||
|
print(doc.text)
|
||||||
|
|
||||||
|
#print(textacyCorpus[2].text)
|
||||||
print(textacyCorpus[2].text)
|
|
||||||
#printRandomDoc(textacyCorpus)
|
#printRandomDoc(textacyCorpus)
|
||||||
#print(textacyCorpus[len(textacyCorpus)-1].text)
|
#print(textacyCorpus[len(textacyCorpus)-1].text)
|
||||||
|
|
||||||
|
|
||||||
|
print()
|
||||||
|
print()
|
||||||
|
|
||||||
|
#################### 1
|
||||||
|
|
||||||
|
PARSER = de_core_news_md.load()#spacy.load(LANGUAGE)
|
||||||
|
|
||||||
|
## files to textacy-corpus
|
||||||
|
textacyCorpus = textacy.Corpus(PARSER)
|
||||||
|
|
||||||
|
for txt, dic in generateFromXML(DATAPATH, normalize_Synonyms=False, clean=True):
|
||||||
|
textacyCorpus.add_text(txt,dic)
|
||||||
|
|
||||||
|
|
||||||
|
for doc in textacyCorpus:
|
||||||
|
print(doc.text)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
print()
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
94
test.py
94
test.py
|
@ -28,95 +28,59 @@ def generateFromXML(path2xml, clean=True, textfield='Beschreibung'):
|
||||||
yield text, metadata
|
yield text, metadata
|
||||||
|
|
||||||
|
|
||||||
def getFirstSynonym(word, thesaurus_gen):
|
|
||||||
|
|
||||||
word = word.lower()
|
|
||||||
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
|
|
||||||
|
|
||||||
|
|
||||||
# durch den thesaurrus iterieren
|
|
||||||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
|
||||||
|
|
||||||
# durch den synonymblock iterieren
|
|
||||||
for syn in syn_block:
|
|
||||||
syn = syn.lower().split(" ") if not re.match(r'\A[\w-]+\Z', syn) else syn # aus synonym mach liste (um evtl. sätze zu identifieziren)
|
|
||||||
|
|
||||||
# falls das wort in dem synonym enthalten ist (also == einem Wort in der liste ist)
|
|
||||||
if word in syn:
|
|
||||||
|
|
||||||
# Hauptform suchen
|
|
||||||
if "Hauptform" in syn:
|
|
||||||
# nicht ausgeben, falls es in Klammern steht
|
|
||||||
for w in syn:
|
|
||||||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
|
||||||
return w
|
|
||||||
|
|
||||||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
|
||||||
if len(syn) == 1:
|
|
||||||
w = syn[0]
|
|
||||||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
|
||||||
return w
|
|
||||||
|
|
||||||
return word # zur Not die eingabe ausgeben
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def getFirstSynonym(word, thesaurus_gen):
|
def getFirstSynonym(word, thesaurus_gen):
|
||||||
|
|
||||||
word = word.lower()
|
word = word.lower()
|
||||||
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
|
|
||||||
|
|
||||||
|
|
||||||
# durch den thesaurrus iterieren
|
# durch den thesaurrus iterieren
|
||||||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||||||
|
|
||||||
for syn in syn_block:
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
if re.match(r'\A[\w-]+\Z', syn): #falls syn einzelwort ist
|
if re.match(r'\A[\w-]+\Z', syn): #falls syn einzelwort ist
|
||||||
if word == syn:
|
if word == syn:
|
||||||
getHauptform(syn_block)
|
return getHauptform(syn_block,word)
|
||||||
|
else: # falls es ein satz ist
|
||||||
|
if word in syn:
|
||||||
|
return getHauptform(syn_block,word)
|
||||||
|
return word #zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def getHauptform(syn_block):
|
def getHauptform(syn_block,word,default_return_first_Syn=False):
|
||||||
for s in syn_block:
|
|
||||||
if "Hauptform" in s:
|
for syn in syn_block:
|
||||||
|
syn = syn.lower()
|
||||||
|
|
||||||
|
if "hauptform" in syn:
|
||||||
# nicht ausgeben, falls es in Klammern steht
|
# nicht ausgeben, falls es in Klammern steht
|
||||||
for w in s:
|
for w in syn.split(" "):
|
||||||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
if not re.match(r'\([^)]+\)', w):
|
||||||
return w
|
return w
|
||||||
|
|
||||||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
if default_return_first_Syn:
|
||||||
if len(s) == 1:
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||||||
w = s[0]
|
for w in syn_block:
|
||||||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
if not re.match(r'\([^)]+\)', w):
|
||||||
return w
|
return w
|
||||||
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||||
|
|
||||||
|
THESAURUS_gen = list(textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";")) # generator [[a,b,c,..],[a,b,c,..],...]
|
||||||
|
|
||||||
|
strings = ["anmachen","Kernspaltung"]
|
||||||
|
#strings = ["Kernspaltung","Kennwort"]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
strings = ["passwort",""]
|
|
||||||
THESAURUS_gen = textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";") # generator [[a,b,c,..],[a,b,c,..],...]
|
|
||||||
|
|
||||||
for s in strings:
|
for s in strings:
|
||||||
print(getFirstSynonym(s,THESAURUS_gen))
|
print(getFirstSynonym(s,THESAURUS_gen))
|
||||||
|
|
||||||
|
strings = ["Kennwort"]
|
||||||
|
#THESAURUS_gen = textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";") # generator [[a,b,c,..],[a,b,c,..],...]
|
||||||
|
|
||||||
|
for s in strings:
|
||||||
|
print(getFirstSynonym(s, THESAURUS_gen))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue