bereit für weitern testrun
This commit is contained in:
parent
2ee9937d23
commit
6b8785d987
File diff suppressed because it is too large
Load Diff
525
testo.py
525
testo.py
|
@ -1,6 +1,9 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
print(datetime.now())
|
||||
import time
|
||||
|
||||
import enchant
|
||||
|
@ -31,25 +34,28 @@ from postal.parser import parse_address
|
|||
|
||||
csv.field_size_limit(sys.maxsize)
|
||||
|
||||
#ssh madonna "nohup /usr/bin/python3 -u /home/jannis.grundmann/PycharmProjects/topicModelingTickets/testo.py &> /home/jannis.grundmann/PycharmProjects/topicModelingTickets/printout.log &"
|
||||
|
||||
|
||||
|
||||
# Load the configuration file
|
||||
# todo configuration file
|
||||
"""
|
||||
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
|
||||
|
||||
config = ConfigParser.ConfigParser()
|
||||
with open(config_ini) as f:
|
||||
config.read_file(f)
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
logile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
|
||||
# config logging
|
||||
logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
||||
logging.basicConfig(filename=logile, level=logging.INFO)
|
||||
#logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
||||
|
||||
|
||||
|
||||
thesauruspath = config.get("filepath","thesauruspath")
|
||||
thesauruspath = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/openthesaurus.csv"
|
||||
#thesauruspath = config.get("filepath","thesauruspath")
|
||||
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
||||
|
||||
from langdetect import detect
|
||||
|
@ -77,21 +83,25 @@ LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
|
|||
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
|
||||
"""
|
||||
|
||||
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("de_stop_words.txt")))
|
||||
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")))
|
||||
|
||||
#en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS))
|
||||
|
||||
LEMMAS = list(textacy.fileio.read_file_lines("lemmas.txt"))
|
||||
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("firstnames.txt")))
|
||||
LEMMAS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
|
||||
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames.txt")))
|
||||
|
||||
NOUNS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen2.txt"))
|
||||
NOUNS = NOUNS +list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen.txt"))
|
||||
NOUNS = list(map(textacy.preprocess.normalize_whitespace, NOUNS))
|
||||
|
||||
print(de_stop_words[10:30])
|
||||
|
||||
|
||||
print(LEMMAS[10:30])
|
||||
print(VORNAMEN[10:30])
|
||||
print(NOUNS[10:30])
|
||||
|
||||
|
||||
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
||||
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
|
||||
|
||||
|
||||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||||
|
@ -111,6 +121,9 @@ def printlog(string, level="INFO"):
|
|||
logging.debug(string)
|
||||
elif level == "WARNING":
|
||||
logging.warning(string)
|
||||
|
||||
|
||||
printlog(str(datetime.now()))
|
||||
printlog("Load functions")
|
||||
|
||||
def compose(*functions):
|
||||
|
@ -142,14 +155,13 @@ def get_calling_function():
|
|||
return func
|
||||
raise AttributeError("func not found")
|
||||
|
||||
|
||||
def printRandomDoc(textacyCorpus):
|
||||
import random
|
||||
print()
|
||||
|
||||
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
|
||||
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
||||
printlog("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||||
printlog("Index: {0} ; Text: {1} ; Metadata: {2}\n".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||||
|
||||
print()
|
||||
|
||||
|
@ -173,6 +185,31 @@ def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|||
else:
|
||||
yield lst[content_collumn]
|
||||
|
||||
def csv_to_metaStream(path2csv: str, metalist: [str]):
|
||||
"""
|
||||
:param path2csv: string
|
||||
:param metalist: list of strings
|
||||
:return: dict-generator
|
||||
"""
|
||||
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
||||
|
||||
content_collumn = 0 # standardvalue
|
||||
metaindices = []
|
||||
metadata_temp = {}
|
||||
for i, lst in enumerate(stream):
|
||||
if i == 0:
|
||||
for j, col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
|
||||
for key in metalist:
|
||||
if key == col:
|
||||
metaindices.append(j)
|
||||
metadata_temp = dict(
|
||||
zip(metalist, metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
|
||||
|
||||
else:
|
||||
metadata = metadata_temp.copy()
|
||||
for key, value in metadata.items():
|
||||
metadata[key] = lst[value]
|
||||
yield metadata
|
||||
|
||||
|
||||
############# filter tokens
|
||||
|
@ -180,6 +217,9 @@ def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|||
def keepPOS(pos_list):
|
||||
return lambda tok : tok.pos_ in pos_list
|
||||
|
||||
def keepNouns(noun_list=NOUNS):
|
||||
return lambda tok : tok.lower_ in noun_list
|
||||
|
||||
|
||||
def removePOS(pos_list):
|
||||
return lambda tok : tok.pos_ not in pos_list
|
||||
|
@ -210,11 +250,11 @@ def remove_words_containing_Numbers():
|
|||
"""
|
||||
def remove_words_containing_topLVL():
|
||||
return lambda tok: not bool(re.search(regex_topLvl, tok.lower_))
|
||||
"""
|
||||
|
||||
|
||||
def remove_words_containing_specialCharacters():
|
||||
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
|
||||
|
||||
"""
|
||||
|
||||
def remove_long_words():
|
||||
return lambda tok: not len(tok.lower_) < 2
|
||||
|
@ -234,9 +274,12 @@ def remove_first_names():
|
|||
def remove_addresses(string):
|
||||
pass #todo
|
||||
|
||||
|
||||
"""
|
||||
def stringcleaning(stringstream, funclist):
|
||||
for string in stringstream:
|
||||
for f in funclist:
|
||||
|
||||
string = f(string)
|
||||
yield string
|
||||
|
||||
|
@ -267,11 +310,9 @@ def replacePhonenumbers(replace_with="PHONENUMBER"):
|
|||
def replaceSharpS(replace_with="ss"):
|
||||
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
|
||||
|
||||
|
||||
|
||||
|
||||
def fixUnicode():
|
||||
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
|
||||
"""
|
||||
|
||||
"""
|
||||
def lemmatizeWord(word,filepath=LEMMAS):
|
||||
|
@ -279,7 +320,7 @@ def lemmatizeWord(word,filepath=LEMMAS):
|
|||
if word.lower() == line.split()[1].strip().lower():
|
||||
return line.split()[0].strip().lower()
|
||||
return word.lower() # falls nix gefunden wurde
|
||||
"""
|
||||
|
||||
|
||||
def create_lemma_dicts(lemmalist=LEMMAS):
|
||||
w_dict = {}
|
||||
|
@ -320,10 +361,10 @@ def lemmatizeWord(word,l_dict=lemma_dict,w_dict=word_dict):
|
|||
except:
|
||||
print(word)
|
||||
return word
|
||||
"""
|
||||
|
||||
def lemmatize():
|
||||
return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc])
|
||||
"""
|
||||
|
||||
def lemmatize():
|
||||
return lambda string: " ".join([lemmatizeWord(s.lower()) for s in string.split()])
|
||||
|
||||
|
@ -341,78 +382,116 @@ def autocorrectWord(word,spellchecker=DE_SPELLCHECKER):
|
|||
|
||||
def autocorrect():
|
||||
return lambda string: " ".join([autocorrectWord(s.lower()) for s in string.split()])
|
||||
"""
|
||||
|
||||
def processTextstream(textstream, pre_parse=None, on_tokens=None, post_parse=None, parser=DE_PARSER):
|
||||
|
||||
def create_lemma_dicts(lemmalist=LEMMAS):
|
||||
w_dict = {}
|
||||
lem_dict = {}
|
||||
|
||||
for i, line in enumerate(lemmalist):
|
||||
try:
|
||||
lem_word_pair = line.split()
|
||||
|
||||
if len(lem_word_pair) != 2:
|
||||
print(line)
|
||||
|
||||
lemma = lem_word_pair[0].strip().lower()
|
||||
|
||||
word = lem_word_pair[1].strip().lower()
|
||||
except:
|
||||
print(line)
|
||||
|
||||
if lemma not in lem_dict:
|
||||
lem_dict[lemma] = i
|
||||
|
||||
if word not in w_dict:
|
||||
w_dict[word] = lem_dict[lemma]
|
||||
|
||||
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
|
||||
|
||||
return l_dict, w_dict
|
||||
lemma_dict, word_dict = create_lemma_dicts()
|
||||
|
||||
def lemmatizeWord(word, l_dict=lemma_dict, w_dict=word_dict, n=3):
|
||||
# mehrmals machen
|
||||
for i in range(n):
|
||||
try:
|
||||
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
|
||||
except:
|
||||
print(word)
|
||||
return word
|
||||
|
||||
|
||||
|
||||
DE_SPELLCHECKER = enchant.Dict("de_DE")
|
||||
EN_SPELLCHECKER = enchant.Dict("en_US")
|
||||
|
||||
def autocorrectWord(word, spellchecker=DE_SPELLCHECKER):
|
||||
try:
|
||||
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
|
||||
except:
|
||||
return word
|
||||
|
||||
############# stringcleaning
|
||||
|
||||
def stringcleaning(stringstream):
|
||||
|
||||
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
||||
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
|
||||
|
||||
|
||||
for string in stringstream:
|
||||
|
||||
string = string.lower()
|
||||
|
||||
# fixUnicode
|
||||
string = textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
|
||||
|
||||
# remove_words_containing_topLVL
|
||||
string = " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w)])
|
||||
|
||||
# replaceRockDots
|
||||
string = re.sub(r'[ß]', "ss", string)
|
||||
string = re.sub(r'[ö]', "oe", string)
|
||||
string = re.sub(r'[ü]', "ue", string)
|
||||
string = re.sub(r'[ä]', "ae", string)
|
||||
|
||||
# seperate_words_on_regex:
|
||||
string = " ".join(re.compile(regex_specialChars).split(string))
|
||||
|
||||
# cut_after
|
||||
word = "gruss"
|
||||
string = string.rpartition(word)[0] if word in string else string
|
||||
|
||||
# lemmatize
|
||||
string = " ".join([lemmatizeWord(word) for word in string.split()])
|
||||
|
||||
# autocorrect
|
||||
#string = " ".join([autocorrectWord(word) for word in string.split()])
|
||||
|
||||
yield string
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def processContentstream(textstream, token_filterlist=None, parser=DE_PARSER):
|
||||
"""
|
||||
:param textstream: string-gen
|
||||
:param funclist: [func]
|
||||
:param parser: spacy-parser
|
||||
:return: string-gen
|
||||
"""
|
||||
#pre_parse
|
||||
if pre_parse is not None:
|
||||
textstream = stringcleaning(textstream, pre_parse)
|
||||
|
||||
|
||||
pipe = parser.pipe(textstream)
|
||||
|
||||
tokens=[]
|
||||
for doc in pipe:
|
||||
|
||||
tokens = [tok for tok in doc]
|
||||
|
||||
# in_parse
|
||||
if on_tokens is not None:
|
||||
tokens = processTokens(tokens, on_tokens)
|
||||
|
||||
|
||||
# post_parse
|
||||
if post_parse is not None:
|
||||
|
||||
#todo vllt doch lieber eine große funktion basteln, dieses zusammenfrickeln nervt
|
||||
yield post_parse(parser(" ".join([tok.lower_ for tok in tokens])))
|
||||
|
||||
|
||||
else:
|
||||
yield " ".join([tok.lower_ for tok in tokens])
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def processTokens(tokens, funclist):
|
||||
# in:tokenlist, funclist
|
||||
# out: tokenlist
|
||||
for f in funclist:
|
||||
|
||||
tokens = list(filter(f, tokens))
|
||||
|
||||
return tokens
|
||||
|
||||
|
||||
|
||||
pre_parse=[
|
||||
fixUnicode(),
|
||||
replaceRockDots(),
|
||||
remove_words_containing_topLVL(),
|
||||
seperate_words_on_regex(),
|
||||
lemmatize(),
|
||||
cut_after(),
|
||||
autocorrect()
|
||||
|
||||
]
|
||||
|
||||
custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","voraus",
|
||||
"hallo","gerne","freundlich","fragen","fehler","bitten","ehre", "lieb",
|
||||
"versuchen","unbestimmt","woche","tadelos", "klappen" ,"mittlerweile", "bekommen","erreichbar"
|
||||
]
|
||||
|
||||
|
||||
on_tokens=[
|
||||
"""
|
||||
filter_tokens=[
|
||||
#removeENT(["PERSON"]),
|
||||
#idee addressen enfernen #bisher mit cut_after("gruss")
|
||||
#idee rechtschreibkorrektur
|
||||
#idee thesaurus
|
||||
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
||||
#idee rechtschreibkorrektur --> PyEnchant
|
||||
#idee thesaurus --> WordNet, eigener
|
||||
|
||||
remove_words_containing_Numbers(),
|
||||
|
||||
|
@ -424,14 +503,122 @@ on_tokens=[
|
|||
remove_short_words(),
|
||||
remove_first_names(),
|
||||
|
||||
keepPOS(["NOUN"]),
|
||||
|
||||
]
|
||||
"""
|
||||
|
||||
|
||||
|
||||
#pre_parse
|
||||
textstream = stringcleaning(textstream)
|
||||
|
||||
pipe = parser.pipe(textstream)
|
||||
|
||||
tokens=[]
|
||||
for doc in pipe:
|
||||
|
||||
tokens = [tok for tok in doc]
|
||||
print(" ".join([tok.lower_ for tok in tokens]))
|
||||
|
||||
# in_parse
|
||||
if token_filterlist is not None:
|
||||
tokens = filterTokens(tokens, token_filterlist)
|
||||
|
||||
|
||||
|
||||
|
||||
yield " ".join([tok.lower_ for tok in tokens])
|
||||
|
||||
|
||||
|
||||
def processDictstream(dictstream, funcdict, parser=DE_PARSER):
|
||||
"""
|
||||
|
||||
:param dictstream: dict-gen
|
||||
:param funcdict:
|
||||
clean_in_meta = {
|
||||
"Solution":funclist,
|
||||
...
|
||||
}
|
||||
|
||||
:param parser: spacy-parser
|
||||
:return: dict-gen
|
||||
"""
|
||||
for dic in dictstream:
|
||||
result = {}
|
||||
for key, value in dic.items():
|
||||
|
||||
if key in funcdict:
|
||||
|
||||
doc = parser(value)
|
||||
tokens = [tok for tok in doc]
|
||||
funclist = funcdict[key]
|
||||
|
||||
tokens = filterTokens(tokens, funclist)
|
||||
|
||||
|
||||
result[key] = " ".join([tok.lower_ for tok in tokens])
|
||||
|
||||
|
||||
else:
|
||||
result[key] = value
|
||||
yield result
|
||||
|
||||
def filterTokens(tokens, funclist):
|
||||
# in:tokenlist, funclist
|
||||
# out: tokenlist
|
||||
for f in funclist:
|
||||
|
||||
tokens = list(filter(f, tokens))
|
||||
|
||||
return tokens
|
||||
|
||||
|
||||
|
||||
custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","voraus",
|
||||
"hallo","gerne","freundlich","fragen","fehler","bitten","ehre", "lieb",
|
||||
"versuchen","unbestimmt","woche","tadelos", "klappen" ,"mittlerweile", "bekommen","erreichbar"
|
||||
]
|
||||
|
||||
|
||||
filter_tokens=[
|
||||
#removeENT(["PERSON"]),
|
||||
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
||||
#idee rechtschreibkorrektur --> PyEnchant
|
||||
#idee thesaurus --> WordNet
|
||||
|
||||
keepNouns(),
|
||||
|
||||
remove_words_containing_Numbers(),
|
||||
|
||||
removePOS(["PUNCT","SPACE","NUM"]),
|
||||
|
||||
removeWords(de_stop_words+custom_words),
|
||||
|
||||
remove_long_words(),
|
||||
remove_short_words(),
|
||||
remove_first_names()
|
||||
|
||||
#keepPOS(["NOUN"]),
|
||||
|
||||
]
|
||||
|
||||
post_parse=None
|
||||
|
||||
|
||||
|
||||
metaliste = [
|
||||
"Subject",
|
||||
"categoryName",
|
||||
"Solution"
|
||||
]
|
||||
|
||||
clean_in_meta = {
|
||||
"Solution":[removePOS(["SPACE"])],
|
||||
"Subject":[removePOS(["SPACE","PUNCT"])],
|
||||
"categoryName": [removePOS(["SPACE", "PUNCT"])]
|
||||
}
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
@ -476,8 +663,13 @@ pipe=[
|
|||
|
||||
|
||||
|
||||
path2csv = "M42-Export/Tickets_med.csv"
|
||||
path2csv = "M42-Export/de_tickets.csv"
|
||||
|
||||
|
||||
|
||||
|
||||
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
|
||||
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
|
||||
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
|
||||
|
||||
de_corpus = textacy.Corpus(DE_PARSER)
|
||||
#en_corpus = textacy.Corpus(EN_PARSER)
|
||||
|
@ -487,7 +679,8 @@ de_corpus = textacy.Corpus(DE_PARSER)
|
|||
## add files to textacy-corpus,
|
||||
printlog("add texts to textacy-corpus")
|
||||
de_corpus.add_texts(
|
||||
processTextstream(csv_to_contentStream(path2csv,"Description"), pre_parse=pre_parse, on_tokens=on_tokens, post_parse=post_parse)
|
||||
processContentstream(csv_to_contentStream(path2csv,"Description"), token_filterlist=filter_tokens),
|
||||
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
|
||||
)
|
||||
|
||||
for i in range(10):
|
||||
|
@ -496,28 +689,6 @@ for i in range(10):
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
||||
spracherkennung
|
||||
|
@ -540,6 +711,9 @@ wörter korrigieren
|
|||
sinnlose bsp: nr54065467 455a33c5 tvt?= ------problem--------
|
||||
|
||||
"""
|
||||
end = time.time()
|
||||
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -550,36 +724,6 @@ print("\n\n")
|
|||
start = time.time()
|
||||
|
||||
|
||||
|
||||
# build citionary of ticketcategories
|
||||
labelist = []
|
||||
|
||||
for texdoc in de_corpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
|
||||
labelist.append(texdoc.metadata["categoryName"])
|
||||
|
||||
|
||||
LABELDICT = {k: v for v, k in enumerate(labelist)}
|
||||
print(LABELDICT)
|
||||
|
||||
|
||||
|
||||
def label2ID(label,labeldict=LABELDICT):
|
||||
return labeldict.get(label,len(labeldict))
|
||||
|
||||
def generate_labled_lines(textacyCorpus):
|
||||
for doc in textacyCorpus:
|
||||
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
|
||||
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################'####################' todo alles in config
|
||||
|
||||
ngrams = 1
|
||||
|
||||
min_df = 0.1
|
||||
|
@ -594,13 +738,10 @@ weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
|||
top_topic_words = 10
|
||||
top_document_labels_per_topic = 5
|
||||
|
||||
n_topics = 20 #len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
||||
n_topics = 15 #len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
||||
|
||||
|
||||
|
||||
end = time.time()
|
||||
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -640,14 +781,14 @@ print()
|
|||
|
||||
|
||||
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
|
||||
print('topic', topic_idx, ':', ' '.join(top_terms))
|
||||
printlog('topic {0}: {1}'.format(topic_idx, " ".join(top_terms)))
|
||||
|
||||
|
||||
print()
|
||||
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
||||
print(topic_idx)
|
||||
printlog(topic_idx)
|
||||
for j in top_docs:
|
||||
print(de_corpus[j].metadata['categoryName'])
|
||||
printlog(de_corpus[j].metadata['categoryName'])
|
||||
|
||||
#####################################################################################################################
|
||||
print()
|
||||
|
@ -656,4 +797,92 @@ print()
|
|||
|
||||
|
||||
end = time.time()
|
||||
printlog("\n\n\nTime Elapsed Topic Modeling:{0}\n\n".format(end - start))
|
||||
printlog("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start)/60,topicModel))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
|
||||
|
||||
print("\n\n")
|
||||
start = time.time()
|
||||
|
||||
n_topics = len(LABELDICT) #len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
||||
|
||||
|
||||
# build citionary of ticketcategories
|
||||
labelist = []
|
||||
|
||||
for texdoc in de_corpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
|
||||
labelist.append(texdoc.metadata["categoryName"])
|
||||
|
||||
|
||||
LABELDICT = {k: v for v, k in enumerate(labelist)}
|
||||
print(LABELDICT)
|
||||
|
||||
|
||||
|
||||
def label2ID(label,labeldict=LABELDICT):
|
||||
return labeldict.get(label,len(labeldict))
|
||||
|
||||
def generate_labled_lines(textacyCorpus):
|
||||
for doc in textacyCorpus:
|
||||
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
|
||||
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
jgibbsLLDA_root = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/java_LabledLDA/"
|
||||
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
||||
|
||||
|
||||
#create file
|
||||
textacy.fileio.write_file_lines(generate_labled_lines(de_corpus), filepath=LLDA_filepath)
|
||||
|
||||
|
||||
# wait for file to exist
|
||||
while not os.path.exists(LLDA_filepath):
|
||||
time.sleep(1)
|
||||
|
||||
print("\n\n")
|
||||
printlog("start LLDA:")
|
||||
#run JGibsslda file
|
||||
FNULL = open(os.devnull, 'w') # supress output
|
||||
subprocess.call(["java",
|
||||
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
|
||||
"jgibblda.LDA",
|
||||
"-est",
|
||||
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
|
||||
"-dfile","tickets.gz",
|
||||
"-twords",str(top_topic_words),
|
||||
"-ntopics", str(n_topics)], stdout = FNULL)
|
||||
|
||||
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
||||
|
||||
#twords
|
||||
subprocess.call(["gzip",
|
||||
"-dc",
|
||||
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
|
||||
#####################################################################################################################
|
||||
print()
|
||||
print()
|
||||
|
||||
end = time.time()
|
||||
printlog("\n\n\nTime Elapsed Topic Modeling JGibbsLLDA:{0} min\n\n".format((end - start)/60))
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
132
testra.py
132
testra.py
|
@ -1,34 +1,132 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import time
|
||||
start = time.time()
|
||||
import corenlp as corenlp
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
|
||||
import spacy
|
||||
import textacy
|
||||
import nltk
|
||||
from textblob_de import TextBlobDE
|
||||
from textblob_de import PatternParser
|
||||
#from polyglot.text import Text
|
||||
import hunspell
|
||||
from postal.parser import parse_address
|
||||
|
||||
import langdetect
|
||||
import enchant
|
||||
start = time.time()
|
||||
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
#todo ticket.csv aufteilen in de und en
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
print(datetime.now())
|
||||
|
||||
|
||||
path2xml="/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deWordNet.xml"
|
||||
|
||||
#print(parse_address(str(textacy.fileio.read_file("teststring.txt"))))
|
||||
from langdetect import detect
|
||||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||||
root = tree.getroot()
|
||||
|
||||
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
||||
|
||||
nomen=[]
|
||||
|
||||
|
||||
|
||||
|
||||
### extract from derewo
|
||||
|
||||
#http://www1.ids-mannheim.de/kl/projekte/methoden/derewo.html
|
||||
|
||||
|
||||
raw = textacy.fileio.read_file_lines("DeReKo-2014-II-MainArchive-STT.100000.freq")
|
||||
|
||||
for line in raw:
|
||||
line_list=line.split()
|
||||
if line_list[2] == "NN":
|
||||
string = line_list[1].lower()
|
||||
|
||||
# replaceRockDots
|
||||
string = re.sub(r'[ß]', "ss", string)
|
||||
string = re.sub(r'[ö]', "oe", string)
|
||||
string = re.sub(r'[ü]', "ue", string)
|
||||
string = re.sub(r'[ä]', "ae", string)
|
||||
|
||||
|
||||
nomen.append(string.lower().strip())
|
||||
|
||||
|
||||
textacy.fileio.write_file_lines(nomen,"nomen2.txt")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
||||
### extract from deWordNet.xml
|
||||
|
||||
#https://github.com/hdaSprachtechnologie/odenet
|
||||
|
||||
for r in root:
|
||||
for element in r:
|
||||
|
||||
if element.tag == "LexicalEntry":
|
||||
for i,subentry in enumerate(element):
|
||||
if subentry.tag == "Lemma" and subentry.attrib["partOfSpeech"] == "n":
|
||||
string = (subentry.attrib["writtenForm"])
|
||||
# replaceRockDots
|
||||
string = re.sub(r'[ß]', "ss", string)
|
||||
string = re.sub(r'[ö]', "oe", string)
|
||||
string = re.sub(r'[ü]', "ue", string)
|
||||
string = re.sub(r'[ä]', "ae", string)
|
||||
|
||||
# seperate_words_on_regex:
|
||||
string = " ".join(re.compile(regex_specialChars).split(string))
|
||||
string_list=string.split()
|
||||
if len(string_list) == 1:
|
||||
nomen.append(string.lower().strip())
|
||||
|
||||
|
||||
textacy.fileio.write_file_lines(nomen,"nomen.txt")
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
stream = textacy.fileio.read_csv("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_2017-09-13.csv", delimiter=";")
|
||||
content_collumn_name = "Description"
|
||||
content_collumn = 9 # standardvalue
|
||||
|
@ -64,7 +162,7 @@ textacy.fileio.write_csv(en_tickets,"M42-Export/en_tickets.csv", delimiter=";")
|
|||
textacy.fileio.write_csv(misc_tickets,"M42-Export/misc_tickets.csv", delimiter=";")
|
||||
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue