llda mit subjects und keywords korrigiert
This commit is contained in:
parent
4a3683635e
commit
7214911606
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
11
main.py
11
main.py
|
@ -21,15 +21,12 @@ start = time.time()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# todo llda topics zusammenfassen
|
# idee llda topics zusammenfassen
|
||||||
# idee lda so trainieren, dass zuordnung term <-> topic nicht zu schwach wird, aber möglichst viele topics
|
# idee lda so trainieren, dass zuordnung term <-> topic nicht zu schwach wird, aber möglichst viele topics
|
||||||
# frage wieviele tickets pro topic?
|
|
||||||
# todo modelle testen
|
|
||||||
# frage welche mitarbeiter bearbeiteten welche Topics? idee topics mit mitarbeiternummern erstzen
|
# frage welche mitarbeiter bearbeiteten welche Topics? idee topics mit mitarbeiternummern erstzen
|
||||||
# frage wenn 155 versch. kb-einträge benutzt wurden, wieso gibt es nur 139 topics?
|
|
||||||
# idee word vorher mit semantischen netz abgleichen: wenn zu weit entfernt, dann ignore
|
# idee word vorher mit semantischen netz abgleichen: wenn zu weit entfernt, dann ignore
|
||||||
|
|
||||||
#todo FREITAG zeichnen, refactoring
|
# todo modelle testen
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -59,11 +56,11 @@ logprint("")
|
||||||
logprint("")
|
logprint("")
|
||||||
|
|
||||||
|
|
||||||
#topicModeling.main(algorithm="lda")
|
topicModeling.main(algorithm="llda")
|
||||||
logprint("")
|
logprint("")
|
||||||
|
|
||||||
|
|
||||||
topicModeling.main(algorithm="llda")
|
#topicModeling.main(algorithm="llda")
|
||||||
logprint("")
|
logprint("")
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -121,7 +121,7 @@ def list_from_files(*paths):
|
||||||
|
|
||||||
return list(map(textacy.preprocess.normalize_whitespace, liste))
|
return list(map(textacy.preprocess.normalize_whitespace, liste))
|
||||||
|
|
||||||
def debug():
|
def breakpoint():
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def normalize(string):
|
def normalize(string):
|
||||||
|
@ -148,6 +148,9 @@ def deprecated(func):
|
||||||
|
|
||||||
return new_func
|
return new_func
|
||||||
|
|
||||||
|
def flatten(liste):
|
||||||
|
return [item for sublist in liste for item in sublist]
|
||||||
|
|
||||||
|
|
||||||
def printRandomDoc(textacyCorpus):
|
def printRandomDoc(textacyCorpus):
|
||||||
"""
|
"""
|
||||||
|
|
236
test.py
236
test.py
|
@ -22,58 +22,6 @@ import draw
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# kb2keywords_dict
|
|
||||||
|
|
||||||
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv",
|
|
||||||
delimiter=";")
|
|
||||||
next(kb2keywords_gen, None) # skip first
|
|
||||||
used_kb=[]
|
|
||||||
for kb in kb2keywords_gen:
|
|
||||||
used_kb.append(kb[1])
|
|
||||||
print("used_kb: {}".format(len(list(set(used_kb)))))
|
|
||||||
|
|
||||||
# von 260 kb einträgen insg. wurden 155 genutzt
|
|
||||||
|
|
||||||
#"ArticleID";"Subject";"Keywords";"Solution";"SolutionText";"CreatedOn"
|
|
||||||
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", #
|
|
||||||
delimiter=";")
|
|
||||||
next(kb2keywords_gen, None) # skip first
|
|
||||||
cats=[]
|
|
||||||
subjects=[]
|
|
||||||
keywords=[]
|
|
||||||
for kb in kb2keywords_gen:
|
|
||||||
cats.append(kb[0])
|
|
||||||
subjects.append(kb[1])
|
|
||||||
keywords.append(kb[2].split(","))
|
|
||||||
|
|
||||||
cats_lst = list(set(cats))
|
|
||||||
print("cats: {}".format(len(cats_lst)))
|
|
||||||
print(cats_lst[0:20])
|
|
||||||
|
|
||||||
print(len(subjects))
|
|
||||||
subj_lst = list(set(subjects)) #frage: hat wirklich jeder kb_eintrag ein anderesn Betreff?
|
|
||||||
print("subjects: {}".format(len(subj_lst)))
|
|
||||||
print(subj_lst[0:20])
|
|
||||||
|
|
||||||
keywords = [item for sublist in keywords for item in sublist]
|
|
||||||
|
|
||||||
kys_lst = list(set(keywords))
|
|
||||||
print("keywords: {}".format(len(kys_lst)))
|
|
||||||
print(kys_lst[0:20])
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
used_list = ['bd_unicard_nicht_eingeschrieben', 'sd_vpn_temporaerer fehler ub', 'sd_webmailer_threadanzeige und weiterleitung', 'ub_beschaedigte unicard', 'sd_boss_notenverbuchung', 'd.3 client installation', 'sd_keine rueckantwort kunde', 'sd_asknet_und_dreamspark', 'sd_beantragung_unicard', 'sd_gastaufenthalter', 'sd_internationaloffice', 'sd_outlook anmeldung gestoert', 'unicard_restbetrag_auszahlung', 'apps_dms_d.3 client installation/login d.3 funktioniert nicht', 'ub_unicard_unicard mit vollmacht abholen', 'sd_namensaenderung mitarbeiter', 'sd_itmc kurse anmeldebestaetigung', 'sd_zugriff_onlinedienste_rueckmeldung', 'benutzer zum redmine hinzufuegen', 'sd_unicard_gesperrte unicard entsperre', 'lsf freischaltung als mitarbeiter/in', 'sd_mail_als_anhang', 'sd-e-mail_adresse_funktional_beantragen', 'sd_goeke drucker', 'sd_unimail imap_pop3', 'sd_origin_workaround', 'sd_matlab lizenzdatei pc-pools', 'sd_outlook kontakte automatische aktualisierung', 'sd_sap konteneinsicht antrag', 'ohne betreff', 'sd_telefonantrag_änderung_neuantrag', 'sd_sophos download', 'sd_geraeteausleihe', 'studierendenausweis', 'sd_citavi', 'sd_laufzeit unimail account', 'sd_login_unibib ub-it', 'sd_tu_app_keine internetverbindung', 'sd_unicard_max_laufzeit', 'ub_unicard_zusendung der karte moeglich?', 'sd_telefonbuch-eintrag_änderung', 'ub_drucker kopierer', 'windows 10', 'sd_telefon (antrag: neuanschluss, umzug, änderung erledigt)', 'sd_tu-app feedback standard', 'sd_spam e-mail bekannt meldung', 'sd_spss_online_bestellung', 'sd_apple-on-campus', 'sd_studisek', 'sd_office 365 plus support', 'sd_sap_initialkennwort_englisch', 'sd_office365_asknet', 're: elektroarbeiten fuer leitsystem 2. und 3. obergeschoss', 'sd_login tu portale', 'ungueltiges ticket siehe journal', 'sd_sap_freischaltung ohne passwortaenderung', 'bd_unicard_geldkarte_laden', 'sd_verlust/antrag unicard', 'sd_unimail zu exchange', 'citavi_lizenzschluessel_nicht bekommen', 'sd_plotauftrag_zv', 'sd_citavi_support', 'sd_antworten_korrekt', 'sd_wlan-gastkonto', 'sd_antwort_phishingmail', 'bd_unicard_freigabe_beantragung', 'sd_origin nur noch eine seriennummer', 'cm_asiexception', 'sd_login_tu_portale', 'sd_webmailer_thread-anzeige', 'apps_dms-passwort d.3', 'apps_redmine_repository', 'sd_uniaccount_passwortaenderung', 'sd_phishing', 'sd_sap_firefox_esr', 'vpn verbindung fuer unitymedia kunden', 'sd_kurs-angebote anmeldung', 'sd_unicard fehlerhafte geldbuchung', 'sd_uniaccount_ehemalige_passwortaenderung', 'sd_sap_dienstreise', 'cm_lsf-boss_freischaltung', 'wlan', 'uni card', 'sd_webmailer einrichtung weiterleitung', 'spam ohne tu bezug', 'sd_outlook_in_exchange_einbinden', 'sd_wlan_beratung', 'sd_uniaccount_dauer freischaltung', 'sd_sap_konteneinsicht_ workaround', 'sd_vpn anleitungen', 'sd_asknet_mitarbeiter_softwarebestellung', 'sd_unicard_abholung', 'sd_vpn_probleme_mit_unitymedia', 'sd_diensthandy beschaffung', 'sd_unicard_defekt', 'sd_freischaltung uniaccount verzoegert', 'sd_kurs-angebote itmc', 'bd_goeke_allgemein', 'sd_uniaccount_ehemalige_studierende', 'sd_stellenausschreibung schwarzes brett', 'freischaltung uniaccount', 'sd_unicard_workaround_bestellung', 'probleme mit der namensaenderung/ neue unicard', 'ub_geldchip-problem bei uc', 'sd_semesterticket', 'problem mit der beantragung von der unicard', 'sd_citavi bestellung', 'sd_immatrikulationsbescheigung_druckfehler', 'sd_vpn_aktualisierung', 'vpn_ipsec_stoerung', 'sd_dreamspark', 'ub_namensaenderung', 'sd_immatrikulationsbescheinigung_portal', 'ub_prod_neue unicard bei beschaedigung', 'sd_vpn_webvpn', 'sd_telefonbuch_prof_eintragung', 'sd_kontakt_asknet', 'probleme mit unicard', 'sd_office 356 plus bestellung', 'sd_gmx_web.de', 'fehlender eintrag im elektronischen telefonbuch', 'ub_prod_namenskorrektur_student', 'einrichtung des eduroam netzwerks', 'sd_sap_initialkennwort', 'sd_boss-bescheinigung', 'sd_wlan passwort setzen', 'sd_aktivierung uniaccount', 'sd_gleitzeitanlage_dez3_stoerung', 'sd_heirat_namensaenderung_student', 'ub_unicard_spaetere abholung moeglich?', 'unicard nochmal beantragen', 'sd_studisek_buchung_semesterbeitrag', 'sd_pruefungsamt', 'unicard vergessen abzuholen und nicht mehr da', 'sd_antrag funktionale mailadresse', 'sd_email_namensaenderung', 'sd_telefonbuch, neues system', 'sd_account_abmelden', 'ub_unicard_abholungszeiten']
|
|
||||||
labellist = ['sd_antworten_korrekt', 'sd_kurs-angebote anmeldung', 'sd_semesterticket', 'apps_dms-passwort d.3', 'freischaltung uniaccount', 'sd_heirat_namensaenderung_student', 'bd_unicard_freigabe_beantragung', 'sd_uniaccount_ehemalige_studierende', 'sd_sap_dienstreise', 'sd_origin_workaround', 'sd_uniaccount_ehemalige_passwortaenderung', 'fehlender eintrag im elektronischen telefonbuch', 'wlan', 'sd_tu-app feedback standard', 'sd_wlan_beratung', 'sd_uniaccount_passwortaenderung', 're: elektroarbeiten fuer leitsystem 2. und 3. obergeschoss', 'sd_webmailer_threadanzeige und weiterleitung', 'ub_unicard_spaetere abholung moeglich?', 'sd_citavi_support', 'sd_outlook kontakte automatische aktualisierung', 'sd_origin nur noch eine seriennummer', 'lsf freischaltung als mitarbeiter/in', 'cm_asiexception', 'sd_freischaltung uniaccount verzoegert', 'ub_unicard_zusendung der karte moeglich?', 'sd_login_unibib ub-it', 'uni card', 'sd_outlook anmeldung gestoert', 'd.3 client installation', 'ub_unicard_abholungszeiten', 'sd_antwort_phishingmail', 'sd_matlab lizenzdatei pc-pools', 'sd_sap_initialkennwort', 'sd_sap_freischaltung ohne passwortaenderung', 'sd_spss_online_bestellung', 'probleme mit der namensaenderung/ neue unicard', 'sd_keine rueckantwort kunde', 'sd_unimail imap_pop3', 'sd_beantragung_unicard', 'sd_unicard_gesperrte unicard entsperre', 'sd_internationaloffice', 'unicard nochmal beantragen', 'sd_stellenausschreibung schwarzes brett', 'sd_sophos download', 'cm_lsf-boss_freischaltung', 'sd_verlust/antrag unicard', 'vpn_ipsec_stoerung', 'sd_account_abmelden', 'sd_outlook_in_exchange_einbinden', 'ub_namensaenderung', 'sd_telefon (antrag: neuanschluss, umzug, änderung erledigt)', 'unicard vergessen abzuholen und nicht mehr da', 'apps_redmine_repository', 'einrichtung des eduroam netzwerks', 'sd_unicard_max_laufzeit', 'sd_gmx_web.de', 'sd_unicard fehlerhafte geldbuchung', 'sd_geraeteausleihe', 'spam ohne tu bezug', 'sd_uniaccount_dauer freischaltung', 'apps_dms_d.3 client installation/login d.3 funktioniert nicht', 'sd_office 365 plus support', 'sd_unicard_defekt', 'sd_phishing', 'sd_goeke drucker', 'ub_unicard_unicard mit vollmacht abholen', 'sd_gleitzeitanlage_dez3_stoerung', 'sd_pruefungsamt', 'sd_aktivierung uniaccount', 'sd_boss-bescheinigung', 'sd_sap_initialkennwort_englisch', 'bd_unicard_geldkarte_laden', 'sd_telefonbuch-eintrag_änderung', 'vpn verbindung fuer unitymedia kunden', 'sd_studisek', 'sd_antrag funktionale mailadresse', 'sd_asknet_und_dreamspark', 'sd_unicard_workaround_bestellung', 'sd_sap_firefox_esr', 'sd_vpn anleitungen', 'sd_office365_asknet', 'citavi_lizenzschluessel_nicht bekommen', 'sd_sap konteneinsicht antrag', 'sd_spam e-mail bekannt meldung', 'ub_prod_namenskorrektur_student', 'ub_beschaedigte unicard', 'sd_namensaenderung mitarbeiter', 'sd_mail_als_anhang', 'benutzer zum redmine hinzufuegen', 'sd_login_tu_portale', 'sd_email_namensaenderung', 'windows 10', 'ungueltiges ticket siehe journal', 'sd_vpn_temporaerer fehler ub', 'ub_prod_neue unicard bei beschaedigung', 'sd_dreamspark', 'sd_webmailer einrichtung weiterleitung', 'sd_asknet_mitarbeiter_softwarebestellung', 'sd_studisek_buchung_semesterbeitrag', 'sd_immatrikulationsbescheinigung_portal', 'sd_vpn_probleme_mit_unitymedia', 'sd-e-mail_adresse_funktional_beantragen', 'sd_diensthandy beschaffung', 'sd_vpn_webvpn', 'sd_laufzeit unimail account', 'sd_citavi', 'problem mit der beantragung von der unicard', 'sd_kurs-angebote itmc', 'sd_telefonbuch, neues system', 'sd_login tu portale', 'sd_wlan passwort setzen', 'sd_zugriff_onlinedienste_rueckmeldung', 'unicard_restbetrag_auszahlung', 'sd_immatrikulationsbescheigung_druckfehler', 'bd_unicard_nicht_eingeschrieben', 'sd_unimail zu exchange', 'sd_wlan-gastkonto', 'probleme mit unicard', 'sd_telefonbuch_prof_eintragung', 'sd_vpn_aktualisierung', 'sd_apple-on-campus', 'bd_goeke_allgemein', 'studierendenausweis', 'ub_drucker kopierer', 'sd_unicard_abholung', 'sd_office 356 plus bestellung', 'ohne betreff', 'sd_tu_app_keine internetverbindung', 'sd_boss_notenverbuchung', 'ub_geldchip-problem bei uc', 'sd_itmc kurse anmeldebestaetigung', 'sd_citavi bestellung', 'sd_telefonantrag_änderung_neuantrag', 'sd_sap_konteneinsicht_ workaround', 'sd_kontakt_asknet', 'sd_plotauftrag_zv', 'sd_webmailer_thread-anzeige', 'sd_gastaufenthalter']
|
|
||||||
|
|
||||||
for l in used_list:
|
|
||||||
if l not in labellist:
|
|
||||||
print(l)
|
|
||||||
|
|
||||||
print(len(used_list))
|
|
||||||
print(len(labellist))
|
|
||||||
|
|
||||||
# load corpus
|
# load corpus
|
||||||
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
|
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
|
||||||
preCorpus_name = "de" + "_pre_ticket"
|
preCorpus_name = "de" + "_pre_ticket"
|
||||||
|
@ -87,17 +35,133 @@ corpus_train = corpus[0:split_index]
|
||||||
corpus_test = corpus[split_index:len(corpus)-1]
|
corpus_test = corpus[split_index:len(corpus)-1]
|
||||||
|
|
||||||
|
|
||||||
|
# frage wieviele tickets pro topic?
|
||||||
|
|
||||||
|
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
|
||||||
|
|
||||||
|
ticket2kb_dict = {}
|
||||||
|
|
||||||
|
for line in kb2ticket_gen:
|
||||||
|
|
||||||
|
ticket_id = line[0]
|
||||||
|
kb_id = line[1]
|
||||||
|
|
||||||
|
ticket2kb_dict[ticket_id] = kb_id
|
||||||
|
# {'INC55646': 'KBA10065', 'INC65776': 'KBA10040', 'INC43025': 'KBA10056', ...} # kb2keywords_dict
|
||||||
|
|
||||||
|
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
|
||||||
|
|
||||||
|
next(kb2keywords_gen, None) # skip first line("ArticleID";"Subject";"Keywords";...)
|
||||||
|
|
||||||
|
kb2keywords_dict = {}
|
||||||
|
|
||||||
|
kb_keywords=False
|
||||||
|
|
||||||
|
for line in kb2keywords_gen:
|
||||||
|
|
||||||
|
kb_id = line[0]
|
||||||
|
|
||||||
|
subject = line[1]
|
||||||
|
|
||||||
|
keywords = line[2]
|
||||||
|
keywords_list = [normalize(x) for x in str(keywords).split(",")]
|
||||||
|
|
||||||
|
if kb_id not in kb2keywords_dict.keys():
|
||||||
|
kb2keywords_dict[kb_id] = []
|
||||||
|
|
||||||
|
if kb_keywords:
|
||||||
|
for item in keywords_list:
|
||||||
|
if item != "":
|
||||||
|
kb2keywords_dict[kb_id].append(item)
|
||||||
|
|
||||||
|
else:
|
||||||
|
kb2keywords_dict[kb_id].append(subject)
|
||||||
|
|
||||||
|
# remove all empty items
|
||||||
|
kb2keywords_dict = {k: v for k, v in kb2keywords_dict.items() if len(v) != 0}
|
||||||
|
# {'KBA10091': ['citavi'], 'KBA10249': ['"beschaedigte unicard"', 'risse', '"defekte karte"'], ...}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# lda bild abdunkeln
|
|
||||||
# auschnitte
|
cat_dict = {}
|
||||||
|
count_dict={}
|
||||||
|
keywords_dict={}
|
||||||
|
for doc in corpus:
|
||||||
|
|
||||||
|
category_name_ = doc.metadata["categoryName"]
|
||||||
|
if category_name_ not in cat_dict.keys():
|
||||||
|
cat_dict[category_name_] = 1
|
||||||
|
else:
|
||||||
|
cat_dict[category_name_] += 1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
x=doc.metadata["TicketNumber"]
|
||||||
|
|
||||||
|
x=ticket2kb_dict[x]
|
||||||
|
|
||||||
|
x=kb2keywords_dict[x]
|
||||||
|
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
for k,v in kb2keywords_dict.items(): #str,list
|
||||||
|
for elem in v:
|
||||||
|
|
||||||
|
if elem not in count_dict.keys():
|
||||||
|
count_dict[elem] = 1
|
||||||
|
else:
|
||||||
|
count_dict[elem] += 1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
import operator
|
||||||
|
"""
|
||||||
|
sorted_dict = sorted(count_dict.items(), key=operator.itemgetter(1))
|
||||||
|
|
||||||
|
for k,v in sorted_dict:
|
||||||
|
print(k,v)
|
||||||
|
|
||||||
|
print(len(sorted_dict))
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
|
||||||
|
next(kb2keywords_gen, None) # skip first
|
||||||
|
|
||||||
|
cnt=0
|
||||||
|
for kb in kb2keywords_gen:
|
||||||
|
cnt +=1
|
||||||
|
print(str(cnt))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
count_dict = {}
|
||||||
|
|
||||||
|
# "ArticleID";"Subject";"Keywords";"Solution";"SolutionText";"CreatedOn"
|
||||||
|
|
||||||
|
for kb_entry in kb2keywords_gen:
|
||||||
|
|
||||||
|
entry_ = kb_entry[1]
|
||||||
|
|
||||||
|
if entry_ not in count_dict.keys():
|
||||||
|
count_dict[entry_] = 1
|
||||||
|
else:
|
||||||
|
count_dict[entry_] += 1
|
||||||
|
|
||||||
|
|
||||||
|
sorted_dict = sorted(count_dict.items(), key=operator.itemgetter(1))
|
||||||
|
|
||||||
|
#for k,v in sorted_dict:
|
||||||
|
# print(k,v)
|
||||||
|
|
||||||
|
#print(len(sorted_dict))
|
||||||
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
matplotlib.use('Agg')
|
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -110,6 +174,64 @@ import matplotlib.pyplot as plt
|
||||||
end = time.time()
|
end = time.time()
|
||||||
print("\n\n\nTime Elapsed Test:{0}\n\n".format(end - start))
|
print("\n\n\nTime Elapsed Test:{0}\n\n".format(end - start))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
# kb2keywords_dict
|
||||||
|
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv",
|
||||||
|
delimiter=";")
|
||||||
|
used_kb=[]
|
||||||
|
for kb in kb2keywords_gen:
|
||||||
|
used_kb.append(kb[1])
|
||||||
|
print("used_kb: {}".format(len(list(set(used_kb)))))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#"ArticleID";"Subject";"Keywords";"Solution";"SolutionText";"CreatedOn"
|
||||||
|
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", #
|
||||||
|
delimiter=";")
|
||||||
|
next(kb2keywords_gen, None) # skip first
|
||||||
|
cat_lst=[]
|
||||||
|
sub_lst=[]
|
||||||
|
key_lst=[]
|
||||||
|
for kb in kb2keywords_gen:
|
||||||
|
cat_lst.append(kb[0])
|
||||||
|
sub_lst.append(kb[1])
|
||||||
|
key_lst.append(kb[2].split(","))
|
||||||
|
|
||||||
|
cats_setlist = list(set(cat_lst))
|
||||||
|
print("cats: {}".format(len(cats_setlist)))
|
||||||
|
print(cats_setlist[0:20])
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
print("sub_lst: {}".format(len(sub_lst)))
|
||||||
|
sub_setlist = list(set(sub_lst)) #frage: hat wirklich jeder kb_eintrag ein anderesn Betreff?
|
||||||
|
print("sub_setlist: {}".format(len(sub_setlist)))
|
||||||
|
#print(sub_setlist[0:20])
|
||||||
|
print()
|
||||||
|
|
||||||
|
key_lst = [item for sublist in key_lst for item in sublist] #flatten list
|
||||||
|
key_setlist = list(set(key_lst))
|
||||||
|
print("key_setlist: {}".format(len(key_setlist)))
|
||||||
|
#print(key_setlist[0:20])
|
||||||
|
|
||||||
|
print("\n\n\n\n")
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
used_list = ['bd_unicard_nicht_eingeschrieben', 'sd_vpn_temporaerer fehler ub', 'sd_webmailer_threadanzeige und weiterleitung', 'ub_beschaedigte unicard', 'sd_boss_notenverbuchung', 'd.3 client installation', 'sd_keine rueckantwort kunde', 'sd_asknet_und_dreamspark', 'sd_beantragung_unicard', 'sd_gastaufenthalter', 'sd_internationaloffice', 'sd_outlook anmeldung gestoert', 'unicard_restbetrag_auszahlung', 'apps_dms_d.3 client installation/login d.3 funktioniert nicht', 'ub_unicard_unicard mit vollmacht abholen', 'sd_namensaenderung mitarbeiter', 'sd_itmc kurse anmeldebestaetigung', 'sd_zugriff_onlinedienste_rueckmeldung', 'benutzer zum redmine hinzufuegen', 'sd_unicard_gesperrte unicard entsperre', 'lsf freischaltung als mitarbeiter/in', 'sd_mail_als_anhang', 'sd-e-mail_adresse_funktional_beantragen', 'sd_goeke drucker', 'sd_unimail imap_pop3', 'sd_origin_workaround', 'sd_matlab lizenzdatei pc-pools', 'sd_outlook kontakte automatische aktualisierung', 'sd_sap konteneinsicht antrag', 'ohne betreff', 'sd_telefonantrag_änderung_neuantrag', 'sd_sophos download', 'sd_geraeteausleihe', 'studierendenausweis', 'sd_citavi', 'sd_laufzeit unimail account', 'sd_login_unibib ub-it', 'sd_tu_app_keine internetverbindung', 'sd_unicard_max_laufzeit', 'ub_unicard_zusendung der karte moeglich?', 'sd_telefonbuch-eintrag_änderung', 'ub_drucker kopierer', 'windows 10', 'sd_telefon (antrag: neuanschluss, umzug, änderung erledigt)', 'sd_tu-app feedback standard', 'sd_spam e-mail bekannt meldung', 'sd_spss_online_bestellung', 'sd_apple-on-campus', 'sd_studisek', 'sd_office 365 plus support', 'sd_sap_initialkennwort_englisch', 'sd_office365_asknet', 're: elektroarbeiten fuer leitsystem 2. und 3. obergeschoss', 'sd_login tu portale', 'ungueltiges ticket siehe journal', 'sd_sap_freischaltung ohne passwortaenderung', 'bd_unicard_geldkarte_laden', 'sd_verlust/antrag unicard', 'sd_unimail zu exchange', 'citavi_lizenzschluessel_nicht bekommen', 'sd_plotauftrag_zv', 'sd_citavi_support', 'sd_antworten_korrekt', 'sd_wlan-gastkonto', 'sd_antwort_phishingmail', 'bd_unicard_freigabe_beantragung', 'sd_origin nur noch eine seriennummer', 'cm_asiexception', 'sd_login_tu_portale', 'sd_webmailer_thread-anzeige', 'apps_dms-passwort d.3', 'apps_redmine_repository', 'sd_uniaccount_passwortaenderung', 'sd_phishing', 'sd_sap_firefox_esr', 'vpn verbindung fuer unitymedia kunden', 'sd_kurs-angebote anmeldung', 'sd_unicard fehlerhafte geldbuchung', 'sd_uniaccount_ehemalige_passwortaenderung', 'sd_sap_dienstreise', 'cm_lsf-boss_freischaltung', 'wlan', 'uni card', 'sd_webmailer einrichtung weiterleitung', 'spam ohne tu bezug', 'sd_outlook_in_exchange_einbinden', 'sd_wlan_beratung', 'sd_uniaccount_dauer freischaltung', 'sd_sap_konteneinsicht_ workaround', 'sd_vpn anleitungen', 'sd_asknet_mitarbeiter_softwarebestellung', 'sd_unicard_abholung', 'sd_vpn_probleme_mit_unitymedia', 'sd_diensthandy beschaffung', 'sd_unicard_defekt', 'sd_freischaltung uniaccount verzoegert', 'sd_kurs-angebote itmc', 'bd_goeke_allgemein', 'sd_uniaccount_ehemalige_studierende', 'sd_stellenausschreibung schwarzes brett', 'freischaltung uniaccount', 'sd_unicard_workaround_bestellung', 'probleme mit der namensaenderung/ neue unicard', 'ub_geldchip-problem bei uc', 'sd_semesterticket', 'problem mit der beantragung von der unicard', 'sd_citavi bestellung', 'sd_immatrikulationsbescheigung_druckfehler', 'sd_vpn_aktualisierung', 'vpn_ipsec_stoerung', 'sd_dreamspark', 'ub_namensaenderung', 'sd_immatrikulationsbescheinigung_portal', 'ub_prod_neue unicard bei beschaedigung', 'sd_vpn_webvpn', 'sd_telefonbuch_prof_eintragung', 'sd_kontakt_asknet', 'probleme mit unicard', 'sd_office 356 plus bestellung', 'sd_gmx_web.de', 'fehlender eintrag im elektronischen telefonbuch', 'ub_prod_namenskorrektur_student', 'einrichtung des eduroam netzwerks', 'sd_sap_initialkennwort', 'sd_boss-bescheinigung', 'sd_wlan passwort setzen', 'sd_aktivierung uniaccount', 'sd_gleitzeitanlage_dez3_stoerung', 'sd_heirat_namensaenderung_student', 'ub_unicard_spaetere abholung moeglich?', 'unicard nochmal beantragen', 'sd_studisek_buchung_semesterbeitrag', 'sd_pruefungsamt', 'unicard vergessen abzuholen und nicht mehr da', 'sd_antrag funktionale mailadresse', 'sd_email_namensaenderung', 'sd_telefonbuch, neues system', 'sd_account_abmelden', 'ub_unicard_abholungszeiten']
|
||||||
|
labellist = ['sd_antworten_korrekt', 'sd_kurs-angebote anmeldung', 'sd_semesterticket', 'apps_dms-passwort d.3', 'freischaltung uniaccount', 'sd_heirat_namensaenderung_student', 'bd_unicard_freigabe_beantragung', 'sd_uniaccount_ehemalige_studierende', 'sd_sap_dienstreise', 'sd_origin_workaround', 'sd_uniaccount_ehemalige_passwortaenderung', 'fehlender eintrag im elektronischen telefonbuch', 'wlan', 'sd_tu-app feedback standard', 'sd_wlan_beratung', 'sd_uniaccount_passwortaenderung', 're: elektroarbeiten fuer leitsystem 2. und 3. obergeschoss', 'sd_webmailer_threadanzeige und weiterleitung', 'ub_unicard_spaetere abholung moeglich?', 'sd_citavi_support', 'sd_outlook kontakte automatische aktualisierung', 'sd_origin nur noch eine seriennummer', 'lsf freischaltung als mitarbeiter/in', 'cm_asiexception', 'sd_freischaltung uniaccount verzoegert', 'ub_unicard_zusendung der karte moeglich?', 'sd_login_unibib ub-it', 'uni card', 'sd_outlook anmeldung gestoert', 'd.3 client installation', 'ub_unicard_abholungszeiten', 'sd_antwort_phishingmail', 'sd_matlab lizenzdatei pc-pools', 'sd_sap_initialkennwort', 'sd_sap_freischaltung ohne passwortaenderung', 'sd_spss_online_bestellung', 'probleme mit der namensaenderung/ neue unicard', 'sd_keine rueckantwort kunde', 'sd_unimail imap_pop3', 'sd_beantragung_unicard', 'sd_unicard_gesperrte unicard entsperre', 'sd_internationaloffice', 'unicard nochmal beantragen', 'sd_stellenausschreibung schwarzes brett', 'sd_sophos download', 'cm_lsf-boss_freischaltung', 'sd_verlust/antrag unicard', 'vpn_ipsec_stoerung', 'sd_account_abmelden', 'sd_outlook_in_exchange_einbinden', 'ub_namensaenderung', 'sd_telefon (antrag: neuanschluss, umzug, änderung erledigt)', 'unicard vergessen abzuholen und nicht mehr da', 'apps_redmine_repository', 'einrichtung des eduroam netzwerks', 'sd_unicard_max_laufzeit', 'sd_gmx_web.de', 'sd_unicard fehlerhafte geldbuchung', 'sd_geraeteausleihe', 'spam ohne tu bezug', 'sd_uniaccount_dauer freischaltung', 'apps_dms_d.3 client installation/login d.3 funktioniert nicht', 'sd_office 365 plus support', 'sd_unicard_defekt', 'sd_phishing', 'sd_goeke drucker', 'ub_unicard_unicard mit vollmacht abholen', 'sd_gleitzeitanlage_dez3_stoerung', 'sd_pruefungsamt', 'sd_aktivierung uniaccount', 'sd_boss-bescheinigung', 'sd_sap_initialkennwort_englisch', 'bd_unicard_geldkarte_laden', 'sd_telefonbuch-eintrag_änderung', 'vpn verbindung fuer unitymedia kunden', 'sd_studisek', 'sd_antrag funktionale mailadresse', 'sd_asknet_und_dreamspark', 'sd_unicard_workaround_bestellung', 'sd_sap_firefox_esr', 'sd_vpn anleitungen', 'sd_office365_asknet', 'citavi_lizenzschluessel_nicht bekommen', 'sd_sap konteneinsicht antrag', 'sd_spam e-mail bekannt meldung', 'ub_prod_namenskorrektur_student', 'ub_beschaedigte unicard', 'sd_namensaenderung mitarbeiter', 'sd_mail_als_anhang', 'benutzer zum redmine hinzufuegen', 'sd_login_tu_portale', 'sd_email_namensaenderung', 'windows 10', 'ungueltiges ticket siehe journal', 'sd_vpn_temporaerer fehler ub', 'ub_prod_neue unicard bei beschaedigung', 'sd_dreamspark', 'sd_webmailer einrichtung weiterleitung', 'sd_asknet_mitarbeiter_softwarebestellung', 'sd_studisek_buchung_semesterbeitrag', 'sd_immatrikulationsbescheinigung_portal', 'sd_vpn_probleme_mit_unitymedia', 'sd-e-mail_adresse_funktional_beantragen', 'sd_diensthandy beschaffung', 'sd_vpn_webvpn', 'sd_laufzeit unimail account', 'sd_citavi', 'problem mit der beantragung von der unicard', 'sd_kurs-angebote itmc', 'sd_telefonbuch, neues system', 'sd_login tu portale', 'sd_wlan passwort setzen', 'sd_zugriff_onlinedienste_rueckmeldung', 'unicard_restbetrag_auszahlung', 'sd_immatrikulationsbescheigung_druckfehler', 'bd_unicard_nicht_eingeschrieben', 'sd_unimail zu exchange', 'sd_wlan-gastkonto', 'probleme mit unicard', 'sd_telefonbuch_prof_eintragung', 'sd_vpn_aktualisierung', 'sd_apple-on-campus', 'bd_goeke_allgemein', 'studierendenausweis', 'ub_drucker kopierer', 'sd_unicard_abholung', 'sd_office 356 plus bestellung', 'ohne betreff', 'sd_tu_app_keine internetverbindung', 'sd_boss_notenverbuchung', 'ub_geldchip-problem bei uc', 'sd_itmc kurse anmeldebestaetigung', 'sd_citavi bestellung', 'sd_telefonantrag_änderung_neuantrag', 'sd_sap_konteneinsicht_ workaround', 'sd_kontakt_asknet', 'sd_plotauftrag_zv', 'sd_webmailer_thread-anzeige', 'sd_gastaufenthalter']
|
||||||
|
|
||||||
|
for l in used_list:
|
||||||
|
if l not in labellist:
|
||||||
|
print(l)
|
||||||
|
|
||||||
|
print(len(used_list))
|
||||||
|
print(len(labellist))
|
||||||
|
"""
|
||||||
|
|
||||||
"""
|
"""
|
||||||
vllt kategorien in unterkategorien aufteilen
|
vllt kategorien in unterkategorien aufteilen
|
||||||
|
|
||||||
|
|
221
topicModeling.py
221
topicModeling.py
|
@ -240,16 +240,20 @@ def jgibbsLLDA_category(corpus, path2save_results, top_topic_words=7):
|
||||||
logprint("")
|
logprint("")
|
||||||
logprint("start Category-LLDA:")
|
logprint("start Category-LLDA:")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# build dictionary of ticketcategories
|
# build dictionary of ticketcategories
|
||||||
labelist = []
|
labelist = []
|
||||||
for texdoc in corpus.get(lambda texdoc: texdoc.metadata["categoryName"] not in labelist):
|
for doc in corpus:
|
||||||
labelist.append(texdoc.metadata["categoryName"])
|
labelist.append(normalize(doc.metadata["categoryName"]))
|
||||||
|
|
||||||
labelist = list(set(labelist))
|
labelist = list(set(labelist))
|
||||||
print("len(labelist): {}".format(len(labelist)))
|
print("len(labelist): {}".format(len(labelist)))
|
||||||
|
|
||||||
labeldict = {k: v for v, k in enumerate(labelist)}
|
labeldict = {k: v for v, k in enumerate(labelist)}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def gen_cat_lines(textacyCorpus, labeldict):
|
def gen_cat_lines(textacyCorpus, labeldict):
|
||||||
""" generates [topic1, topic2....] tok1 tok2 tok3 out of corpi"""
|
""" generates [topic1, topic2....] tok1 tok2 tok3 out of corpi"""
|
||||||
|
|
||||||
|
@ -404,6 +408,213 @@ def jgibbsLLDA_KB(corpus, path2save_results, top_topic_words = 7, kb_keywords=Fa
|
||||||
logprint("\n\n\nTime Elapsed {1}-LLDA :{0} min\n\n".format((end - start) / 60,"Keyword" if kb_keywords else "Subject"))
|
logprint("\n\n\nTime Elapsed {1}-LLDA :{0} min\n\n".format((end - start) / 60,"Keyword" if kb_keywords else "Subject"))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def jgibbsLLDA_KB_v2(corpus, path2save_results, top_topic_words = 7):
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
logprint("")
|
||||||
|
logprint("start LLDA:")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# kb2keywords_dict / kb2subj_dict {str : [str]}
|
||||||
|
|
||||||
|
kb2keywords_dict = {}
|
||||||
|
kb2subjects_dict = {}
|
||||||
|
|
||||||
|
kb_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
|
||||||
|
next(kb_gen, None) # skip first line "ArticleID";"Subject";"Keywords";...
|
||||||
|
|
||||||
|
for line in kb_gen:
|
||||||
|
|
||||||
|
kb_id = line[0]
|
||||||
|
|
||||||
|
|
||||||
|
subject = normalize(line[1])
|
||||||
|
|
||||||
|
keywords = [normalize(x) for x in str(line[2]).split(",")]
|
||||||
|
|
||||||
|
|
||||||
|
if kb_id not in kb2keywords_dict.keys():
|
||||||
|
kb2keywords_dict[kb_id] = keywords if keywords != [''] else ["DEFAULT"]
|
||||||
|
else:
|
||||||
|
kb2keywords_dict[kb_id] = kb2keywords_dict[kb_id] + keywords
|
||||||
|
|
||||||
|
|
||||||
|
if kb_id not in kb2subjects_dict.keys():
|
||||||
|
kb2subjects_dict[kb_id] = [normalize(subject) if subject != [''] else "DEFAULT"]
|
||||||
|
else:
|
||||||
|
kb2subjects_dict[kb_id].append(normalize(subject))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ticket2kbs_dict
|
||||||
|
ticket2kbs_dict = {}
|
||||||
|
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
|
||||||
|
next(kb2ticket_gen, None) # skip first line"TicketNumber";"ArticleID"
|
||||||
|
|
||||||
|
for line in kb2ticket_gen:
|
||||||
|
ticket_id = line[0]
|
||||||
|
kb_id = line[1]
|
||||||
|
|
||||||
|
if ticket_id not in ticket2kbs_dict.keys():
|
||||||
|
ticket2kbs_dict[ticket_id] = [kb_id]
|
||||||
|
else:
|
||||||
|
ticket2kbs_dict[ticket_id].append(kb_id)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ticket2keywords
|
||||||
|
ticket2keywords_dict = {} # {str:[str]}
|
||||||
|
|
||||||
|
for ticket_id, kb_ids in ticket2kbs_dict.items():
|
||||||
|
|
||||||
|
if ticket_id not in ticket2keywords_dict.keys():
|
||||||
|
ticket2keywords_dict[ticket_id] = []
|
||||||
|
|
||||||
|
for kb_id in kb_ids:
|
||||||
|
ticket2keywords_dict[ticket_id].append(kb2keywords_dict[kb_id])
|
||||||
|
|
||||||
|
|
||||||
|
ticket2keywords_dict[ticket_id] = flatten(ticket2keywords_dict[ticket_id])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ticket2subjects
|
||||||
|
ticket2subjects_dict = {} # {str:[str]}
|
||||||
|
|
||||||
|
for ticket_id, kb_ids in ticket2kbs_dict.items():
|
||||||
|
|
||||||
|
if ticket_id not in ticket2subjects_dict.keys():
|
||||||
|
ticket2subjects_dict[ticket_id] = []
|
||||||
|
|
||||||
|
for kb_id in kb_ids:
|
||||||
|
ticket2subjects_dict[ticket_id].append(kb2subjects_dict[kb_id])
|
||||||
|
|
||||||
|
|
||||||
|
ticket2subjects_dict[ticket_id] = flatten(ticket2subjects_dict[ticket_id])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# kb2keywords_dict {'KBA10230': ['DEFAULT'], 'KBA10129': ['DEFAULT'], 'KBA10287': ['sd_ansys_informationen'], } len = 260
|
||||||
|
#kb2subjects_dict {'KBA10230': ['unicard nochmal beantragen'], 'KBA10129': ['sd_entsperrung unicard nach verlust/wiederfinden'], } len = 260
|
||||||
|
# ticket2kbs_dict {'INC44526': ['KBA10056'], 'INC67205': ['KBA10056'], } len = 4832
|
||||||
|
# ticket2keywords_dict {'INC44526': ['DEFAULT'], 'INC67205': ['DEFAULT'], 'INC71863': ['DEFAULT'], 'INC44392': ['asknet'] } len=4832
|
||||||
|
#ticket2subjects_dioct {'INC44526': ['sd_telefon (antrag: neuanschluss, umzug, aenderung erledigt)'], len=4832
|
||||||
|
|
||||||
|
|
||||||
|
# frage wieviele tickets pro topic?
|
||||||
|
count_dict = {}
|
||||||
|
for v in ticket2kbs_dict.values():
|
||||||
|
for kb in v:
|
||||||
|
if kb in count_dict.keys():
|
||||||
|
count_dict[kb] +=1
|
||||||
|
else:
|
||||||
|
count_dict[kb] = 1
|
||||||
|
import operator
|
||||||
|
|
||||||
|
sorted_dict = sorted(count_dict.items(), key=operator.itemgetter(1))
|
||||||
|
print("kb_entrys used: {}".format(len(sorted_dict)))
|
||||||
|
for k,v in sorted_dict:
|
||||||
|
print(k,kb2subjects_dict[k],v) #todo das selbe mit keywords
|
||||||
|
|
||||||
|
|
||||||
|
#todo hier weiter
|
||||||
|
|
||||||
|
|
||||||
|
# todo frage wie viele kb_entry's insg genutzt?
|
||||||
|
|
||||||
|
labelist = ticket2keywords_dict.values()
|
||||||
|
labelist = flatten(labelist)
|
||||||
|
labelist = list(set(labelist))
|
||||||
|
labeldict = {k: v for v, k in enumerate(labelist)}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def gen_key_lines(textacyCorpus, labeldict, ticket2keywords_dict):
|
||||||
|
for doc in corpus:
|
||||||
|
|
||||||
|
ticket_number = doc.metadata["TicketNumber"]
|
||||||
|
|
||||||
|
keywords = ticket2keywords_dict.get(ticket_number, ['DEFAULT'])
|
||||||
|
|
||||||
|
if keywords != ['DEFAULT']:
|
||||||
|
|
||||||
|
label = ""
|
||||||
|
for kw in keywords:
|
||||||
|
label = label + str(labeldict.get(normalize(str(kw)), labeldict['DEFAULT'])) + " "
|
||||||
|
|
||||||
|
yield "[ " + label + "] " + doc.text
|
||||||
|
|
||||||
|
keys_line_gen = gen_key_lines(corpus, labeldict, ticket2keywords_dict)
|
||||||
|
|
||||||
|
path2save_keys_results = path2save_results + "_kb_keys_llda_{}".format("top" + str(top_topic_words))
|
||||||
|
|
||||||
|
jgibbsLLDA(labeldict, keys_line_gen, path2save_keys_results, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
def gen_subj_lines(textacyCorpus, labeldict, ticket2subjects_dict):
|
||||||
|
|
||||||
|
for doc in corpus:
|
||||||
|
|
||||||
|
ticket_number = doc.metadata["TicketNumber"]
|
||||||
|
|
||||||
|
keywords = ticket2subjects_dict.get(ticket_number, ['DEFAULT'])
|
||||||
|
|
||||||
|
if keywords != ['DEFAULT']:
|
||||||
|
|
||||||
|
label = ""
|
||||||
|
for kw in keywords:
|
||||||
|
label = label + str(labeldict.get(normalize(str(kw)), len(labeldict))) + " "
|
||||||
|
|
||||||
|
yield "[ " + label + "] " + doc.text
|
||||||
|
"""
|
||||||
|
|
||||||
|
labelist = ticket2subjects_dict.values()
|
||||||
|
labelist = flatten(labelist)
|
||||||
|
labelist = list(set(labelist))
|
||||||
|
labeldict = {k: v for v, k in enumerate(labelist)}
|
||||||
|
labeldict.update({'DEFAULT' : len(labeldict)})
|
||||||
|
|
||||||
|
subj_line_gen = gen_key_lines(corpus, labeldict, ticket2subjects_dict)
|
||||||
|
|
||||||
|
path2save_subj_results = path2save_results + "_kb_subj_llda_{}".format("top" + str(top_topic_words))
|
||||||
|
|
||||||
|
jgibbsLLDA(labeldict, subj_line_gen, path2save_subj_results, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end = time.time()
|
||||||
|
logprint("\n\n\nTime Elapsed LLDA :{0} min\n\n".format((end - start) / 60))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def main( algorithm="llda"):
|
def main( algorithm="llda"):
|
||||||
|
|
||||||
|
|
||||||
|
@ -427,14 +638,16 @@ def main( algorithm="llda"):
|
||||||
if algorithm == "llda":
|
if algorithm == "llda":
|
||||||
|
|
||||||
top_topic_words = 5
|
top_topic_words = 5
|
||||||
|
|
||||||
jgibbsLLDA_category(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
|
jgibbsLLDA_category(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
jgibbsLLDA_KB_v2(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
kb_keywords = False
|
kb_keywords = False
|
||||||
jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
#jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
||||||
|
|
||||||
kb_keywords = True
|
kb_keywords = True
|
||||||
jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
#jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,727 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from datetime import datetime
|
||||||
|
import draw
|
||||||
|
import draw1
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import csv
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
import os.path
|
||||||
|
import subprocess
|
||||||
|
from textacy import Vectorizer, viz
|
||||||
|
|
||||||
|
from miscellaneous import *
|
||||||
|
import textacy
|
||||||
|
from scipy import *
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
csv.field_size_limit(sys.maxsize)
|
||||||
|
FILEPATH = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||||
|
|
||||||
|
|
||||||
|
# load config
|
||||||
|
config_ini = FILEPATH + "config.ini"
|
||||||
|
|
||||||
|
config = ConfigParser.ConfigParser()
|
||||||
|
with open(config_ini) as f:
|
||||||
|
config.read_file(f)
|
||||||
|
|
||||||
|
|
||||||
|
def label2ID(label, labeldict):
|
||||||
|
return labeldict.get(label, len(labeldict))
|
||||||
|
|
||||||
|
|
||||||
|
def generate_lablelID_lines(textacyCorpus, labeldict):
|
||||||
|
for doc in textacyCorpus:
|
||||||
|
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpi
|
||||||
|
yield "[" + str(label2ID(doc.metadata["categoryName"], labeldict)) + "] " + doc.text
|
||||||
|
|
||||||
|
"""
|
||||||
|
def printvecotorization(de_corpus, ngrams=1, min_df=1, max_df=1.0, weighting='tf', named_entities=True):
|
||||||
|
logprint(str("ngrams: {0}".format(ngrams)))
|
||||||
|
logprint(str("min_df: {0}".format(min_df)))
|
||||||
|
logprint(str("max_df: {0}".format(max_df)))
|
||||||
|
logprint(str("named_entities: {0}".format(named_entities)))
|
||||||
|
|
||||||
|
# printlog("vectorize corpi...")
|
||||||
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
||||||
|
|
||||||
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=named_entities, as_strings=True) for doc in de_corpus)
|
||||||
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
||||||
|
id2term = vectorizer.__getattribute__("id_to_term")
|
||||||
|
|
||||||
|
for t in terms_list:
|
||||||
|
print(t)
|
||||||
|
logprint("doc_term_matrix: {0}".format(doc_term_matrix))
|
||||||
|
logprint("id2term: {0}".format(id2term))
|
||||||
|
"""
|
||||||
|
|
||||||
|
def textacyTopicModeling(corpus,
|
||||||
|
n_topics = 15, top_topic_words = 7, top_document_labels_per_topic = 5,
|
||||||
|
ngrams = 1, min_df=1, max_df=1.0,
|
||||||
|
topicModel='lda'):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
n_terms = int(n_topics * top_topic_words)
|
||||||
|
sort_terms_by = 'seriation' # 'seriation', 'weight', 'index', 'alphabetical'
|
||||||
|
rank_terms_by = 'corpus' # 'corpus', 'topic'
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
logprint(
|
||||||
|
"############### Topic Modeling {0} ###########################".format(
|
||||||
|
topicModel))
|
||||||
|
logprint(str("ngrams: {0}".format(ngrams)))
|
||||||
|
logprint(str("min_df: {0}".format(min_df)))
|
||||||
|
logprint(str("max_df: {0}".format(max_df)))
|
||||||
|
logprint(str("n_topics: {0}".format(n_topics)))
|
||||||
|
logprint("\n")
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
|
||||||
|
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
|
||||||
|
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#################### vectorize corpi ####################
|
||||||
|
|
||||||
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
||||||
|
|
||||||
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus)
|
||||||
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
||||||
|
id2term = vectorizer.__getattribute__("id_to_term")
|
||||||
|
|
||||||
|
# printlog("terms_list: {0}".format(list(terms_list)))
|
||||||
|
# printlog("doc_term_matrix: {0}".format(doc_term_matrix))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
##################### Initialize and train a topic model ##############################################
|
||||||
|
|
||||||
|
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
|
||||||
|
|
||||||
|
model.fit(doc_term_matrix)
|
||||||
|
|
||||||
|
doc_topic_matrix = model.transform(doc_term_matrix)
|
||||||
|
|
||||||
|
|
||||||
|
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
|
||||||
|
logprint('topic {0}: {1}'.format(topic_idx, " ".join(top_terms)))
|
||||||
|
|
||||||
|
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
||||||
|
logprint(topic_idx)
|
||||||
|
for j in top_docs:
|
||||||
|
logprint(corpus[j].metadata['categoryName'])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################### termite plot ###################################################################
|
||||||
|
|
||||||
|
grams_label = "uni" if ngrams == 1 else "bi"
|
||||||
|
"""
|
||||||
|
model.termite_plot(doc_term_matrix, id2term,
|
||||||
|
|
||||||
|
n_terms=n_terms,
|
||||||
|
sort_terms_by=sort_terms_by,
|
||||||
|
rank_terms_by=rank_terms_by+'_weight',
|
||||||
|
|
||||||
|
|
||||||
|
save= FILEPATH + "results/{}_{}_{}_{}_{}_{}.png".format(grams_label,topicModel,n_topics,n_terms,sort_terms_by,rank_terms_by))
|
||||||
|
"""
|
||||||
|
draw1.termite_plot(model,doc_term_matrix, id2term,
|
||||||
|
|
||||||
|
n_terms=n_terms,
|
||||||
|
sort_terms_by=sort_terms_by,
|
||||||
|
rank_terms_by=rank_terms_by + '_weight',
|
||||||
|
|
||||||
|
save=FILEPATH + "results/{}_{}_{}_{}_{}_{}.png".format(grams_label, topicModel, n_topics,
|
||||||
|
n_terms, sort_terms_by, rank_terms_by))
|
||||||
|
|
||||||
|
end = time.time()
|
||||||
|
logprint("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start) / 60, topicModel))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def jgibbsLLDA_category(corpus, path2save_results, top_topic_words=7):
|
||||||
|
start = time.time()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
jgibbsLLDA_root = FILEPATH + "java_LabledLDA/"
|
||||||
|
|
||||||
|
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# build dictionary of ticketcategories
|
||||||
|
labelist = []
|
||||||
|
for texdoc in corpus.get(lambda texdoc: texdoc.metadata["categoryName"] not in labelist):
|
||||||
|
labelist.append(texdoc.metadata["categoryName"])
|
||||||
|
|
||||||
|
|
||||||
|
labeldict = {k: v for v, k in enumerate(labelist)}
|
||||||
|
reverse_labeldict = {v: k for k, v in labeldict.items()}
|
||||||
|
|
||||||
|
#and save
|
||||||
|
labeldict_path = FILEPATH + "results/labeldict.txt"
|
||||||
|
with open(labeldict_path, 'w') as file:
|
||||||
|
file.write(json.dumps(labeldict))
|
||||||
|
|
||||||
|
|
||||||
|
n_topics = len(labeldict) #+1 #default-topic
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# create file with label_IDs (input for llda)
|
||||||
|
textacy.fileio.write_file_lines(generate_lablelID_lines(corpus, labeldict), filepath=LLDA_filepath)
|
||||||
|
|
||||||
|
# wait for file to exist
|
||||||
|
while not os.path.exists(LLDA_filepath):
|
||||||
|
time.sleep(1)
|
||||||
|
|
||||||
|
logprint("")
|
||||||
|
logprint("start LLDA:")
|
||||||
|
|
||||||
|
|
||||||
|
# run JGibbsLLDA file
|
||||||
|
|
||||||
|
FNULL = open(os.devnull, 'w') # supress output
|
||||||
|
cmd_jgibbs_java = ["java", "-cp",
|
||||||
|
"{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(
|
||||||
|
jgibbsLLDA_root),
|
||||||
|
"jgibblda.LDA", "-est", "-dir", "{0}models/tickets".format(jgibbsLLDA_root), "-dfile",
|
||||||
|
"tickets.gz",
|
||||||
|
"-twords", str(top_topic_words), "-ntopics", str(n_topics)]
|
||||||
|
subprocess.call(cmd_jgibbs_java, stdout=FNULL)
|
||||||
|
|
||||||
|
|
||||||
|
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
||||||
|
cmd_gzip = ["gzip", "-dc", "{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)]
|
||||||
|
output = subprocess.check_output(cmd_gzip).decode("utf-8")
|
||||||
|
|
||||||
|
|
||||||
|
topic_regex = re.compile(r'Topic [0-9]*')
|
||||||
|
|
||||||
|
#####################################
|
||||||
|
# todo save results in file aufgrund von results
|
||||||
|
result = []
|
||||||
|
|
||||||
|
for line in output.splitlines():
|
||||||
|
findall = topic_regex.findall(line)
|
||||||
|
if len(findall) != 0:
|
||||||
|
try:
|
||||||
|
index = int(findall[0].split()[1])
|
||||||
|
result.append("Topic {} {}:".format(index, reverse_labeldict[index]))
|
||||||
|
|
||||||
|
except:
|
||||||
|
result.append(line)
|
||||||
|
|
||||||
|
else:
|
||||||
|
result.append(line)
|
||||||
|
|
||||||
|
textacy.fileio.write_file_lines(result, path2save_results+".txt")
|
||||||
|
#####################################
|
||||||
|
|
||||||
|
results = []
|
||||||
|
res_dict = {}
|
||||||
|
count =0
|
||||||
|
for line in output.splitlines():
|
||||||
|
|
||||||
|
findall = topic_regex.findall(line)
|
||||||
|
|
||||||
|
if len(findall) != 0:
|
||||||
|
|
||||||
|
if len(res_dict) != 0:
|
||||||
|
results.append(res_dict) #vorheriges an die liste ran (ist ja dann fertig)
|
||||||
|
|
||||||
|
index = int(findall[0].split()[1])
|
||||||
|
|
||||||
|
res_dict = {index : str(reverse_labeldict[index]) }
|
||||||
|
|
||||||
|
else:
|
||||||
|
splitted = line.split()
|
||||||
|
res_dict[splitted[0]] = float(splitted[1])
|
||||||
|
"""
|
||||||
|
### print terms that are topics
|
||||||
|
for s in list(res_dict.values()):
|
||||||
|
if isinstance(s,str) and splitted[0] in s:
|
||||||
|
vals = list(res_dict.values())
|
||||||
|
keys = list(res_dict.keys())
|
||||||
|
for v in vals:
|
||||||
|
if not isinstance(v,float):
|
||||||
|
print("{}".format(v))
|
||||||
|
print("{}".format(splitted[0]))
|
||||||
|
count +=1
|
||||||
|
print()
|
||||||
|
###
|
||||||
|
"""
|
||||||
|
|
||||||
|
if len(res_dict) != 0:
|
||||||
|
results.append(res_dict) # letzes an die liste ran
|
||||||
|
|
||||||
|
#print(count)
|
||||||
|
#print(float(count)/float(len(labelist)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# {0: 'betrieb', 'service': 0.24162679425837305, 'support': 0.24162679425837305, 'browser': 0.24162679425837305, 'unicard': 0.24162679425837305, 'telefon': 0.0023923444976076593}
|
||||||
|
|
||||||
|
|
||||||
|
# every term in the resulsts to a list
|
||||||
|
|
||||||
|
terms=[]
|
||||||
|
for res in results:
|
||||||
|
for key,value in res.items():
|
||||||
|
if not isinstance(key, int) and not key in terms:
|
||||||
|
terms.append(key)
|
||||||
|
|
||||||
|
term2id = {t:i for i,t in enumerate(terms)} #and to dict
|
||||||
|
|
||||||
|
################# termite plot #####################################################################
|
||||||
|
|
||||||
|
#term_topic_weights.shape = (len(term_ids),len(topic_ids)
|
||||||
|
|
||||||
|
|
||||||
|
#topic_labels = tuple(labelist)
|
||||||
|
|
||||||
|
topic_labels = list(range(len(labelist)))
|
||||||
|
term_labels = list(range(len(term2id))) #tuple([key for key in term2id.keys()])
|
||||||
|
|
||||||
|
|
||||||
|
term_topic_weights = np.zeros((len(term2id),len(topic_labels)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
for i,res in enumerate(results):
|
||||||
|
|
||||||
|
for key,value in res.items():
|
||||||
|
|
||||||
|
if not isinstance(key, int):
|
||||||
|
term_topic_weights[term2id[key]][i] = value
|
||||||
|
term_labels[term2id[key]] = key
|
||||||
|
else:
|
||||||
|
topic_labels[i] = reverse_labeldict[key]
|
||||||
|
|
||||||
|
|
||||||
|
#viz.draw_termite_plot(term_topic_weights, topic_labels, term_labels, save=path2save_results+".png")
|
||||||
|
draw.draw_termite(
|
||||||
|
term_topic_weights, topic_labels, term_labels, save=path2save_results+".png")
|
||||||
|
|
||||||
|
|
||||||
|
end = time.time()
|
||||||
|
logprint("Time Elapsed Topic Modeling JGibbsLLDA:{0} min\n".format((end - start) / 60))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def jgibbsLLDA_KB(corpus, path2save_results, top_topic_words=7, kb_keywords=False):
|
||||||
|
|
||||||
|
jgibbsLLDA_root = FILEPATH + "java_LabledLDA/"
|
||||||
|
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ticket2kb_dict
|
||||||
|
|
||||||
|
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
|
||||||
|
|
||||||
|
ticket2kb_dict = {} #{'INC55646': 'KBA10065', 'INC65776': 'KBA10040', 'INC43025': 'KBA10056', ...}
|
||||||
|
for line in kb2ticket_gen:
|
||||||
|
ticket_id = line[0]
|
||||||
|
kb_id = line[1]
|
||||||
|
|
||||||
|
ticket2kb_dict[ticket_id] = kb_id
|
||||||
|
#############
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# kb2keywords_dict
|
||||||
|
|
||||||
|
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";") #"ArticleID";"Subject";"Keywords";.....
|
||||||
|
next(kb2keywords_gen,None) #skip first
|
||||||
|
kb2keywords_dict = {}
|
||||||
|
|
||||||
|
for lino in kb2keywords_gen:
|
||||||
|
kb_id = lino[0]
|
||||||
|
kb2keywords_dict[kb_id] = []
|
||||||
|
|
||||||
|
subject = lino[1]
|
||||||
|
|
||||||
|
keywords = lino[2]
|
||||||
|
|
||||||
|
keywords_list = [x.lower().strip() for x in map(replaceRockDots(),str(keywords).split(","))]
|
||||||
|
|
||||||
|
if kb_keywords:
|
||||||
|
for item in keywords_list:
|
||||||
|
if item != "":
|
||||||
|
kb2keywords_dict[kb_id].append(item)
|
||||||
|
|
||||||
|
else:
|
||||||
|
kb2keywords_dict[kb_id].append(subject)
|
||||||
|
|
||||||
|
|
||||||
|
#remove all empty items
|
||||||
|
kb2keywords_dict = { k : v for k,v in kb2keywords_dict.items() if len(v) != 0}
|
||||||
|
###############
|
||||||
|
|
||||||
|
|
||||||
|
#keywords2kb_dict
|
||||||
|
keywords2kb_dict = {}
|
||||||
|
for kb_id, lst in kb2keywords_dict.items():
|
||||||
|
for l in lst:
|
||||||
|
if l not in keywords2kb_dict.keys():
|
||||||
|
keywords2kb_dict[l] = [kb_id]
|
||||||
|
else:
|
||||||
|
keywords2kb_dict[l].append(kb_id)
|
||||||
|
############
|
||||||
|
|
||||||
|
|
||||||
|
# idee topic_ID -> KB_ID -> keywords / subject -> llda
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ticket2kb_dict {'INC65627': 'KBA10044', 'INC66057': 'KBA10009', ...}
|
||||||
|
|
||||||
|
# kb2keywords_dict {'KBA10091': ['citavi'], 'KBA10249': ['"beschaedigte unicard"', 'risse', '"defekte karte"'], ...}
|
||||||
|
|
||||||
|
# keywords2kb_dict {'unicard namensaenderung': ['KBA10276'], 'vpn': ['KBA10063'], 'outlook_exchange': ['KBA10181'], ...}
|
||||||
|
|
||||||
|
|
||||||
|
# Look for actually used keywords
|
||||||
|
used_keywords = []
|
||||||
|
for doc in corpus:
|
||||||
|
ticket_number = doc.metadata["TicketNumber"]
|
||||||
|
|
||||||
|
kb_number = ticket2kb_dict.get(ticket_number, None)
|
||||||
|
|
||||||
|
keywords = kb2keywords_dict.get(kb_number, None)
|
||||||
|
|
||||||
|
if keywords and kb_number:
|
||||||
|
used_keywords.append(list(map(normalize,keywords)))
|
||||||
|
|
||||||
|
kb_entries_used = (len(list(set([kb for kb in ticket2kb_dict.values()]))))
|
||||||
|
print("kb_entries_used: {}".format(kb_entries_used))
|
||||||
|
|
||||||
|
labelist = [item for sublist in used_keywords for item in sublist]
|
||||||
|
labelist = list(set(labelist))
|
||||||
|
print("len(labelist): {}".format(len(labelist)))
|
||||||
|
|
||||||
|
|
||||||
|
labeldict = {k: v for v, k in enumerate(labelist)}
|
||||||
|
labeldict_rev = {v: k for k, v in labeldict.items()}
|
||||||
|
print("labledict created")
|
||||||
|
|
||||||
|
def genos_linos(textacyCorpus, labeldict, ticket2kb_dict, kb2keywords_dict):
|
||||||
|
|
||||||
|
for doc in textacyCorpus:
|
||||||
|
|
||||||
|
ticket_number = doc.metadata["TicketNumber"]
|
||||||
|
|
||||||
|
kb_number = ticket2kb_dict.get(ticket_number, None)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
keywords = kb2keywords_dict.get(kb_number, None)
|
||||||
|
|
||||||
|
if keywords is not None:
|
||||||
|
pass
|
||||||
|
if keywords and kb_number:
|
||||||
|
|
||||||
|
label = ""
|
||||||
|
for kw in keywords:
|
||||||
|
label = label + str(labeldict.get( normalize(str(kw)) , len(labeldict))) + " "
|
||||||
|
|
||||||
|
yield "[ " + label + "] " + doc.text
|
||||||
|
|
||||||
|
line_gen = genos_linos(corpus, labeldict, ticket2kb_dict, kb2keywords_dict)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
textacy.fileio.write_file_lines(line_gen, filepath=LLDA_filepath)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# wait for file to exist
|
||||||
|
while not os.path.exists(LLDA_filepath):
|
||||||
|
time.sleep(1)
|
||||||
|
|
||||||
|
logprint("")
|
||||||
|
logprint("start LLDA:")
|
||||||
|
|
||||||
|
|
||||||
|
# run JGibbsLLDA file
|
||||||
|
|
||||||
|
n_topics = len(labeldict) #+1 #default-topic
|
||||||
|
|
||||||
|
FNULL = open(os.devnull, 'w') # supress output
|
||||||
|
cmd_jgibbs_java = ["java", "-cp",
|
||||||
|
"{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(
|
||||||
|
jgibbsLLDA_root),
|
||||||
|
"jgibblda.LDA", "-est", "-dir", "{0}models/tickets".format(jgibbsLLDA_root), "-dfile",
|
||||||
|
"tickets.gz",
|
||||||
|
"-twords", str(top_topic_words), "-ntopics", str(n_topics)]
|
||||||
|
subprocess.call(cmd_jgibbs_java, stdout=FNULL)
|
||||||
|
|
||||||
|
|
||||||
|
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
||||||
|
cmd_gzip = ["gzip", "-dc", "{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)]
|
||||||
|
output = subprocess.check_output(cmd_gzip).decode("utf-8")
|
||||||
|
|
||||||
|
|
||||||
|
topic_regex = re.compile(r'Topic [0-9]*')
|
||||||
|
|
||||||
|
#####################################
|
||||||
|
# todo save results in file aufgrund von results
|
||||||
|
result = []
|
||||||
|
|
||||||
|
for line in output.splitlines():
|
||||||
|
findall = topic_regex.findall(line)
|
||||||
|
if len(findall) != 0:
|
||||||
|
try:
|
||||||
|
index = int(findall[0].split()[1])
|
||||||
|
result.append("Topic {} {}:".format(index, labeldict_rev[index]))
|
||||||
|
|
||||||
|
except:
|
||||||
|
result.append(line)
|
||||||
|
|
||||||
|
else:
|
||||||
|
result.append(line)
|
||||||
|
|
||||||
|
textacy.fileio.write_file_lines(result, path2save_results+".txt")
|
||||||
|
#####################################
|
||||||
|
|
||||||
|
results = []
|
||||||
|
res_dict = {}
|
||||||
|
count =0
|
||||||
|
for line in output.splitlines():
|
||||||
|
|
||||||
|
findall = topic_regex.findall(line)
|
||||||
|
|
||||||
|
if len(findall) != 0:
|
||||||
|
|
||||||
|
if len(res_dict) != 0:
|
||||||
|
results.append(res_dict) #vorheriges an die liste ran (ist ja dann fertig)
|
||||||
|
|
||||||
|
index = int(findall[0].split()[1])
|
||||||
|
|
||||||
|
res_dict = {index : str(labeldict_rev[index]) }
|
||||||
|
|
||||||
|
else:
|
||||||
|
splitted = line.split()
|
||||||
|
res_dict[splitted[0]] = float(splitted[1])
|
||||||
|
|
||||||
|
if len(res_dict) != 0:
|
||||||
|
results.append(res_dict) # letzes an die liste ran
|
||||||
|
|
||||||
|
|
||||||
|
# every term in the resulsts to a list
|
||||||
|
|
||||||
|
terms=[]
|
||||||
|
for res in results:
|
||||||
|
for key,value in res.items():
|
||||||
|
if not isinstance(key, int) and not key in terms:
|
||||||
|
terms.append(key)
|
||||||
|
|
||||||
|
term2id = {t:i for i,t in enumerate(terms)} #and to dict
|
||||||
|
|
||||||
|
################# termite plot #####################################################################
|
||||||
|
topic_labels = list(range(len(labelist)))
|
||||||
|
term_labels = list(range(len(term2id))) #tuple([key for key in term2id.keys()])
|
||||||
|
|
||||||
|
|
||||||
|
term_topic_weights = np.zeros((len(term2id),len(topic_labels)))
|
||||||
|
|
||||||
|
for i,res in enumerate(results):
|
||||||
|
|
||||||
|
for key,value in res.items():
|
||||||
|
|
||||||
|
if not isinstance(key, int):
|
||||||
|
term_topic_weights[term2id[key]][i] = value
|
||||||
|
term_labels[term2id[key]] = key
|
||||||
|
else:
|
||||||
|
topic_labels[i] = labeldict_rev[key]
|
||||||
|
|
||||||
|
|
||||||
|
draw.draw_termite(
|
||||||
|
term_topic_weights, topic_labels, term_labels, save=path2save_results+".png")
|
||||||
|
|
||||||
|
|
||||||
|
end = time.time()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def main(use_cleaned=False, algorithm="llda"):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
logprint("Topic Modeling: {0}".format(datetime.now()))
|
||||||
|
|
||||||
|
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
|
||||||
|
corpus_en_path = FILEPATH + config.get("en_corpus", "path")
|
||||||
|
|
||||||
|
|
||||||
|
if use_cleaned:
|
||||||
|
preCorpus_name = "de" + "_clean_ticket"
|
||||||
|
resultspath = FILEPATH + "results/clean"
|
||||||
|
else:
|
||||||
|
preCorpus_name = "de" + "_pre_ticket"
|
||||||
|
resultspath = FILEPATH + "results/pre"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# load cleand corpus
|
||||||
|
de_corpus, parser = load_corpus(corpus_name=preCorpus_name, corpus_path=corpus_de_path)
|
||||||
|
logprint("Corpus loaded: {0}".format(de_corpus.lang))
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
ngrams = 1
|
||||||
|
min_df = 1
|
||||||
|
max_df = 1.0
|
||||||
|
weighting = 'tf'
|
||||||
|
# weighting ='tfidf'
|
||||||
|
named_entities = False
|
||||||
|
|
||||||
|
|
||||||
|
printvecotorization(ngrams=1, min_df=1, max_df=1.0, weighting=weighting)
|
||||||
|
printvecotorization(ngrams=1, min_df=1, max_df=0.5, weighting=weighting)
|
||||||
|
printvecotorization(ngrams=1, min_df=1, max_df=0.8, weighting=weighting)
|
||||||
|
|
||||||
|
printvecotorization(ngrams=(1, 2), min_df=1, max_df=1.0, weighting=weighting)
|
||||||
|
printvecotorization(ngrams=(1, 2), min_df=1, max_df=0.5, weighting=weighting)
|
||||||
|
printvecotorization(ngrams=(1, 2), min_df=1, max_df=0.8, weighting=weighting)
|
||||||
|
"""
|
||||||
|
|
||||||
|
if algorithm == "llda":
|
||||||
|
top_topic_words = 5
|
||||||
|
path2save_results = resultspath + "_cat_{}_{}".format(algorithm,"top"+str(top_topic_words))
|
||||||
|
jgibbsLLDA_category(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
|
||||||
|
kb_keywords = False
|
||||||
|
path2save_results = resultspath + "_kb_{}_{}_{}".format("keys" if kb_keywords else "subs",algorithm,"top"+str(top_topic_words))
|
||||||
|
jgibbsLLDA_KB(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
||||||
|
|
||||||
|
kb_keywords = True
|
||||||
|
path2save_results = resultspath + "_kb_{}_{}_{}".format("keys" if kb_keywords else "subs", algorithm,
|
||||||
|
"top" + str(top_topic_words))
|
||||||
|
jgibbsLLDA_KB(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words,
|
||||||
|
kb_keywords=kb_keywords)
|
||||||
|
|
||||||
|
"""
|
||||||
|
top_topic_words = 10
|
||||||
|
path2save_results = resultspath + "_{}_{}".format(algorithm,"top"+str(top_topic_words))
|
||||||
|
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
|
||||||
|
top_topic_words = 15
|
||||||
|
path2save_results = resultspath + "_{}_{}".format(algorithm, "top" + str(top_topic_words))
|
||||||
|
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
top_topic_words = 20
|
||||||
|
path2save_results = resultspath + "_{}_{}".format(algorithm, "top" + str(top_topic_words))
|
||||||
|
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||||||
|
|
||||||
|
"""
|
||||||
|
else:
|
||||||
|
|
||||||
|
|
||||||
|
textacyTopicModeling(ngrams = 1,
|
||||||
|
min_df = 1,
|
||||||
|
max_df = 0.9,
|
||||||
|
topicModel = algorithm,
|
||||||
|
n_topics =15,
|
||||||
|
corpus=de_corpus)
|
||||||
|
"""
|
||||||
|
textacyTopicModeling(ngrams=1,
|
||||||
|
min_df=1,
|
||||||
|
max_df=0.9,
|
||||||
|
topicModel=algorithm,
|
||||||
|
n_topics=20,
|
||||||
|
corpus=de_corpus)
|
||||||
|
|
||||||
|
textacyTopicModeling(ngrams=1,
|
||||||
|
min_df=1,
|
||||||
|
max_df=0.9,
|
||||||
|
topicModel=algorithm,
|
||||||
|
n_topics=25,
|
||||||
|
corpus=de_corpus)
|
||||||
|
|
||||||
|
|
||||||
|
textacyTopicModeling(ngrams=1,
|
||||||
|
min_df=1,
|
||||||
|
max_df=0.9,
|
||||||
|
topicModel=algorithm,
|
||||||
|
n_topics=30,
|
||||||
|
corpus=de_corpus)
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
textacyTopicModeling(ngrams=(1, 2),
|
||||||
|
min_df=1,
|
||||||
|
max_df=0.9,
|
||||||
|
topicModel=algorithm,
|
||||||
|
n_topics=15,
|
||||||
|
corpus=de_corpus)
|
||||||
|
"""
|
||||||
|
textacyTopicModeling(ngrams = (1,2),
|
||||||
|
min_df = 1,
|
||||||
|
max_df = 0.9,
|
||||||
|
topicModel = algorithm,
|
||||||
|
n_topics =20,
|
||||||
|
corpus=de_corpus)
|
||||||
|
|
||||||
|
textacyTopicModeling(ngrams = (1,2),
|
||||||
|
min_df = 1,
|
||||||
|
max_df = 0.9,
|
||||||
|
topicModel = algorithm,
|
||||||
|
n_topics =25,
|
||||||
|
corpus=de_corpus)
|
||||||
|
|
||||||
|
|
||||||
|
textacyTopicModeling(ngrams = (1,2),
|
||||||
|
min_df = 1,
|
||||||
|
max_df = 0.9,
|
||||||
|
topicModel = algorithm,
|
||||||
|
n_topics =30,
|
||||||
|
corpus=de_corpus)
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue