unsupervised und supervised-topic-training eingebaut. sollte man jez auf den datensatz loslassen können
This commit is contained in:
parent
4dbb07ae3f
commit
991353b1bb
177
preprocessing.py
177
preprocessing.py
|
@ -1,12 +1,17 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import csv
|
||||
import functools
|
||||
import os.path
|
||||
import re
|
||||
import spacy
|
||||
import sys
|
||||
import textacy
|
||||
import subprocess
|
||||
import time
|
||||
import xml.etree.ElementTree as ET
|
||||
import io
|
||||
|
||||
import spacy
|
||||
import textacy
|
||||
from scipy import *
|
||||
from textacy import Vectorizer
|
||||
|
||||
csv.field_size_limit(sys.maxsize)
|
||||
|
||||
|
||||
|
@ -18,12 +23,16 @@ with open("config.ini") as f:
|
|||
config.read_file(f)
|
||||
|
||||
|
||||
|
||||
path2xml = config.get("default","path2xml")
|
||||
|
||||
PARSER = spacy.load(config.get("default","language"))
|
||||
corpus = textacy.Corpus(PARSER)
|
||||
|
||||
thesauruspath = config.get("default","thesauruspath")
|
||||
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
||||
|
||||
stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) + config.get("preprocessing","custom_words").split(",")
|
||||
|
||||
|
||||
def compose(*functions):
|
||||
|
@ -32,7 +41,6 @@ def compose(*functions):
|
|||
return functools.reduce(compose2, functions, lambda x: x)
|
||||
|
||||
|
||||
################ generate Content and Metadata ########################
|
||||
|
||||
def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
|
||||
"""
|
||||
|
@ -73,8 +81,6 @@ def printRandomDoc(textacyCorpus):
|
|||
|
||||
print()
|
||||
|
||||
################ Preprocess#########################
|
||||
|
||||
def processDictstream(dictstream, funcdict, parser=PARSER):
|
||||
for dic in dictstream:
|
||||
result = {}
|
||||
|
@ -82,7 +88,7 @@ def processDictstream(dictstream, funcdict, parser=PARSER):
|
|||
if key in funcdict:
|
||||
result[key] = funcdict[key](parser(value))
|
||||
else:
|
||||
result[key] = key
|
||||
result[key] = value
|
||||
yield result
|
||||
|
||||
def processTextstream(textstream, func, parser=PARSER):
|
||||
|
@ -109,7 +115,6 @@ def removeAllENT(ent_list, parser=PARSER):
|
|||
|
||||
|
||||
|
||||
|
||||
doc2Set = lambda doc: str(set([tok.text for tok in doc]))
|
||||
doc2String = lambda doc : doc.text
|
||||
|
||||
|
@ -137,13 +142,9 @@ def replacePhonenumbers(replace_with="PHONE",parser=PARSER):
|
|||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def resolveAbbreviations(parser=PARSER):
|
||||
pass #todo
|
||||
|
||||
|
||||
def removeWords(words, keep=None,parser=PARSER):
|
||||
if hasattr(keep, '__iter__'):
|
||||
for k in keep:
|
||||
|
@ -155,7 +156,6 @@ def removeWords(words, keep=None,parser=PARSER):
|
|||
|
||||
|
||||
|
||||
|
||||
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
|
||||
#return lambda doc : parser(" ".join([tok.lower_ for tok in doc]))
|
||||
return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc]))
|
||||
|
@ -196,23 +196,27 @@ def getHauptform(syn_block, word, default_return_first_Syn=False):
|
|||
return w
|
||||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||||
|
||||
def label2ID(label):
|
||||
return {
|
||||
'Neuanschluss' : 0,
|
||||
'LSF' : 1,
|
||||
'Video' : 2,
|
||||
}.get(label,3)
|
||||
|
||||
|
||||
stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) + config.get("preprocessing","custom_words").split(",")
|
||||
|
||||
path2xml = config.get("default","path2xml")
|
||||
def generate_labled_lines(textacyCorpus):
|
||||
for doc in textacyCorpus:
|
||||
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
|
||||
yield "[" + str(label2ID(doc.metadata["Kategorie"])) + "] " + doc.text
|
||||
|
||||
|
||||
|
||||
content_generator = generateMainTextfromTicketXML(path2xml)
|
||||
metadata_generator = generateMetadatafromTicketXML(path2xml)
|
||||
|
||||
####################'####################'####################'####################'####################'##############
|
||||
|
||||
|
||||
|
||||
ents = config.get("preprocessing","ents").split(",")
|
||||
|
||||
|
||||
|
||||
clean_in_content=compose(
|
||||
|
||||
doc2String,
|
||||
|
@ -232,19 +236,134 @@ clean_in_meta = {
|
|||
}
|
||||
|
||||
|
||||
contentStream = processTextstream(content_generator, func=clean_in_content)
|
||||
metaStream = processDictstream(metadata_generator, funcdict=clean_in_meta)
|
||||
|
||||
|
||||
corpus.add_texts(contentStream,metaStream)
|
||||
print(corpus[0].text)
|
||||
|
||||
|
||||
|
||||
## add files to textacy-corpus,
|
||||
print("add texts to textacy-corpus...")
|
||||
corpus.add_texts(
|
||||
processTextstream(generateMainTextfromTicketXML(path2xml), func=clean_in_content),
|
||||
processDictstream(generateMetadatafromTicketXML(path2xml), funcdict=clean_in_meta)
|
||||
)
|
||||
|
||||
printRandomDoc(corpus)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################'####################' Variablen todo alles in config
|
||||
|
||||
ngrams = (1,2)
|
||||
|
||||
min_df = 0
|
||||
max_df = 1.0
|
||||
no_below = 20
|
||||
no_above = 0.5
|
||||
|
||||
topicModel = 'lda'
|
||||
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
|
||||
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
||||
|
||||
top_topic_words = 5
|
||||
top_document_labels_per_topic = 2
|
||||
|
||||
n_topics = 4
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
####################'####################
|
||||
|
||||
|
||||
|
||||
|
||||
print("vectorize corpus...")
|
||||
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
||||
|
||||
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus)
|
||||
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
||||
id2term = vectorizer.__getattribute__("id_to_term")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
|
||||
|
||||
# Initialize and train a topic model
|
||||
print("Initialize and train a topic model")
|
||||
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
|
||||
model.fit(doc_term_matrix)
|
||||
|
||||
#Transform the corpus and interpret our model:
|
||||
print("Transform the corpus and interpret our model")
|
||||
doc_topic_matrix = model.transform(doc_term_matrix)
|
||||
print()
|
||||
|
||||
|
||||
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
|
||||
print('topic', topic_idx, ':', ' '.join(top_terms))
|
||||
|
||||
|
||||
print()
|
||||
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
||||
print(topic_idx)
|
||||
for j in top_docs:
|
||||
print(corpus[j].metadata['Kategorie'])
|
||||
|
||||
#####################################################################################################################
|
||||
print()
|
||||
print()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
|
||||
|
||||
|
||||
|
||||
jgibbsLLDA_root = "java_LabledLDA/"
|
||||
filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
||||
|
||||
|
||||
#create file
|
||||
textacy.fileio.write_file_lines(generate_labled_lines(corpus),filepath=filepath)
|
||||
|
||||
|
||||
# wait for file to exist
|
||||
while not os.path.exists(filepath):
|
||||
time.sleep(1)
|
||||
|
||||
print("start LLDA..")
|
||||
#run JGibsslda file
|
||||
FNULL = open(os.devnull, 'w') # supress output
|
||||
subprocess.call(["java",
|
||||
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
|
||||
"jgibblda.LDA",
|
||||
"-est",
|
||||
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
|
||||
"-dfile","tickets.gz",
|
||||
"-ntopics", str(n_topics)], stdout = FNULL)
|
||||
|
||||
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
||||
|
||||
#print twords
|
||||
subprocess.call(["gzip",
|
||||
"-dc",
|
||||
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
|
||||
#####################################################################################################################
|
||||
print()
|
||||
print()
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue