[thesaurus] input = deWordNet.xml pickle_file = thesaurus_dict.pkl [spellchecking] input = deu_news_2015_1M-sentences.txt pickle_file = words_dict.pkl [lemmatization] input = lemmas.txt pickle_file = lemma_dict.pkl [nouns] input1 = nomen.txt input2 = nomen2.txt pickle_file = nouns_list.pkl [firstnames] input = firstnames.txt pickle_file = firstnames_list.pkl [de_stopwords] input1 = de_stopwords_1.txt input2 = de_stopwords_2.txt input3 = de_stopwords_3.txt pickle_file = stopwords_list.pkl [logging] level = INFO filename = topicModelTickets.log [de_corpus] #input = M42-Export/Tickets_med.csv #input = M42-Export/Tickets_small.csv #input = M42-Export/Tickets_mini.csv input = M42-Export/de_tickets.csv path = corpi/ [en_corpus] input = M42-Export/en_tickets.csv path = corpi/ [tickets] content_collumn_name = Description metaliste = TicketNumber,Subject,CreatedDate,categoryName,Impact,Urgency,BenutzerID,VerantwortlicherID,EigentuemerID,Solution [preprocessing] ents2keep = WORK_OF_ART,ORG,PRODUCT,LOC custom_words = grüßen,fragen,damen,probleme,herren,dank #lemmatize = True [topic modeling] ngrams = (1,2) min_df = 0 max_df = 1.0 no_below = 20 no_above = 0.5 topicModel = lda top_topic_words = 5 top_document_labels_per_topic = 2