# -*- coding: utf-8 -*- from datetime import datetime print(datetime.now()) import time import enchant start = time.time() import logging import csv import functools import os.path import re import subprocess import time import xml.etree.ElementTree as ET import sys import spacy import textacy from scipy import * from textacy import Vectorizer import warnings import configparser as ConfigParser import sys import hunspell from postal.parser import parse_address csv.field_size_limit(sys.maxsize) def printlog(string, level="INFO"): """log and prints""" print(string) if level == "INFO": logging.info(string) elif level == "DEBUG": logging.debug(string) elif level == "WARNING": logging.warning(string) printlog("Load functions") def printRandomDoc(textacyCorpus): import random print() printlog("len(textacyCorpus) = %i" % len(textacyCorpus)) randIndex = int((len(textacyCorpus) - 1) * random.random()) printlog("Index: {0} ; Text: {1} ; Metadata: {2}\n".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata)) print() def load_corpus(corpus_path,corpus_name): # load new lang nlp = spacy.load("de") #load stringstore stringstore_path = corpus_path + corpus_name + '_strings.json' with open(stringstore_path,"r") as file: nlp.vocab.strings.load(file) # define corpus corpus = textacy.Corpus(nlp) # load meta metapath = corpus_path + corpus_name +"_meta.json" metadata_stream = textacy.fileio.read_json_lines(metapath) #load content contentpath = corpus_path + corpus_name+ "_content.bin" spacy_docs = textacy.fileio.read_spacy_docs(corpus.spacy_vocab, contentpath) for spacy_doc, metadata in zip(spacy_docs, metadata_stream): corpus.add_doc( textacy.Doc(spacy_doc, lang=corpus.spacy_lang, metadata=metadata)) return corpus def printvecotorization(ngrams=1, min_df=1, max_df=1.0, weighting='tf', named_entities=True): printlog(str("ngrams: {0}".format(ngrams))) printlog(str("min_df: {0}".format(min_df))) printlog(str("max_df: {0}".format(max_df))) printlog(str("named_entities: {0}".format(named_entities))) # printlog("vectorize corpus...") vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df) terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=named_entities, as_strings=True) for doc in de_corpus) doc_term_matrix = vectorizer.fit_transform(terms_list) id2term = vectorizer.__getattribute__("id_to_term") for t in terms_list: print(t) printlog("doc_term_matrix: {0}".format(doc_term_matrix)) printlog("id2term: {0}".format(id2term)) corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/" corpus_name = "de_corpus" # load corpus de_corpus = load_corpus(corpus_name=corpus_name,corpus_path=corpus_path) for i in range(5): printRandomDoc(de_corpus) # todo gescheites tf(-idf) maß finden ngrams = 1 min_df = 1 max_df = 1.0 weighting = 'tf' # weighting ='tfidf' named_entities = False """ printvecotorization(ngrams=1, min_df=1, max_df=1.0, weighting=weighting) printvecotorization(ngrams=1, min_df=1, max_df=0.5, weighting=weighting) printvecotorization(ngrams=1, min_df=1, max_df=0.8, weighting=weighting) printvecotorization(ngrams=(1, 2), min_df=1, max_df=1.0, weighting=weighting) printvecotorization(ngrams=(1, 2), min_df=1, max_df=0.5, weighting=weighting) printvecotorization(ngrams=(1, 2), min_df=1, max_df=0.8, weighting=weighting) """ # build citionary of ticketcategories labelist = [] for texdoc in de_corpus.get(lambda texdoc: texdoc.metadata["categoryName"] not in labelist): labelist.append(texdoc.metadata["categoryName"]) LABELDICT = {k: v for v, k in enumerate(labelist)} printlog(str("LABELDICT: {0}".format(LABELDICT))) def textacyTopicModeling(ngrams, min_df, max_df, topicModel='lda', n_topics=len(LABELDICT), named_entities=False, corpus=de_corpus): printlog( "############################################ Topic Modeling {0} #############################################".format( topicModel)) print("\n\n") printlog(str("ngrams: {0}".format(ngrams))) printlog(str("min_df: {0}".format(min_df))) printlog(str("max_df: {0}".format(max_df))) printlog(str("n_topics: {0}".format(n_topics))) printlog(str("named_entities: {0}".format(named_entities))) start = time.time() top_topic_words = 10 top_document_labels_per_topic = 5 # http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix weighting = ('tf' if topicModel == 'lda' else 'tfidf') ####################'#################### # printlog("vectorize corpus...") vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df) terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=named_entities, as_strings=True) for doc in corpus) doc_term_matrix = vectorizer.fit_transform(terms_list) id2term = vectorizer.__getattribute__("id_to_term") # printlog("terms_list: {0}".format(list(terms_list))) # printlog("doc_term_matrix: {0}".format(doc_term_matrix)) ##################### LSA, LDA, NMF Topic Modeling via Textacy ############################################## # Initialize and train a topic model # printlog("Initialize and train a topic model..") model = textacy.tm.TopicModel(topicModel, n_topics=n_topics) model.fit(doc_term_matrix) # Transform the corpus and interpret our model: # printlog("Transform the corpus and interpret our model..") doc_topic_matrix = model.transform(doc_term_matrix) print() for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words): printlog('topic {0}: {1}'.format(topic_idx, " ".join(top_terms))) print() for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic): printlog(topic_idx) for j in top_docs: printlog(corpus[j].metadata['categoryName']) print() ##################################################################################################################### print() print() end = time.time() printlog("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start) / 60, topicModel)) # no_below = 20 # no_above = 0.5 # n_topics = len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic """ topicModeling(ngrams = 1, min_df = 1, max_df = 1.0, topicModel = 'lda', n_topics = len(LABELDICT), corpus=de_corpus) topicModeling(ngrams = 1, min_df = 0.1, max_df = 0.6, topicModel = 'lda', n_topics = len(LABELDICT), corpus=de_corpus) topicModeling(ngrams = (1,2), min_df = 1, max_df = 1.0, topicModel = 'lda', n_topics = len(LABELDICT), corpus=de_corpus) topicModeling(ngrams = (1,2), min_df = 0.1, max_df = 0.6, topicModel = 'lda', n_topics = len(LABELDICT), corpus=de_corpus) topicModeling(ngrams = (1,2), min_df = 0.2, max_df = 0.8, topicModel = 'lda', n_topics = 20, corpus=de_corpus) """ ##################### LLDA Topic Modeling via JGibbsLabledLDA ############################################## top_topic_words = 15 print("\n\n") start = time.time() n_topics = len(LABELDICT) # len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic # build citionary of ticketcategories labelist = [] for texdoc in de_corpus.get(lambda texdoc: texdoc.metadata["categoryName"] not in labelist): labelist.append(texdoc.metadata["categoryName"]) LABELDICT = {k: v for v, k in enumerate(labelist)} print(LABELDICT) def label2ID(label, labeldict=LABELDICT): return labeldict.get(label, len(labeldict)) def generate_labled_lines(textacyCorpus): for doc in textacyCorpus: # generate [topic1, topic2....] tok1 tok2 tok3 out of corpus yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text jgibbsLLDA_root = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/java_LabledLDA/" LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root) # create file textacy.fileio.write_file_lines(generate_labled_lines(de_corpus), filepath=LLDA_filepath) # todfo ticket drucken # wait for file to exist while not os.path.exists(LLDA_filepath): time.sleep(1) print("\n\n") printlog("start LLDA:") # run JGibsslda file FNULL = open(os.devnull, 'w') # supress output subprocess.call(["java", "-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root), "jgibblda.LDA", "-est", "-dir", "{0}models/tickets".format(jgibbsLLDA_root), "-dfile", "tickets.gz", "-twords", str(top_topic_words), "-ntopics", str(n_topics)], stdout=FNULL) # ANMERKUNG: Dateien sind versteckt. zu finden in models/ # twords subprocess.call(["gzip", "-dc", "{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)]) ##################################################################################################################### print() print() end = time.time() printlog("\n\n\nTime Elapsed Topic Modeling JGibbsLLDA:{0} min\n\n".format((end - start) / 60))