# -*- coding: utf-8 -*- import csv import functools import re import spacy import sys import textacy import xml.etree.ElementTree as ET import io csv.field_size_limit(sys.maxsize) # Load the configuration file import configparser as ConfigParser config = ConfigParser.ConfigParser() with open("config.ini") as f: config.read_file(f) PARSER = spacy.load(config.get("default","language")) corpus = textacy.Corpus(PARSER) thesauruspath = config.get("default","thesauruspath") THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";")) def compose(*functions): def compose2(f, g): return lambda x: f(g(x)) return functools.reduce(compose2, functions, lambda x: x) ################ generate Content and Metadata ######################## def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'): """ generates strings from XML :param path2xml: :param main_textfield: :param cleaning_function: :yields strings """ tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8")) root = tree.getroot() for ticket in root: for field in ticket: if field.tag == main_textfield: yield field.text def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']): tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8")) root = tree.getroot() for ticket in root: metadata = {} for field in ticket: if field.tag not in leave_out: metadata[field.tag] = field.text yield metadata def printRandomDoc(textacyCorpus): import random print() print("len(textacyCorpus) = %i" % len(textacyCorpus)) randIndex = int((len(textacyCorpus) - 1) * random.random()) print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata)) print() ################ Preprocess######################### def processDictstream(dictstream, funcdict, parser=PARSER): for dic in dictstream: result = {} for key, value in dic.items(): if key in funcdict: result[key] = funcdict[key](parser(value)) else: result[key] = key yield result def processTextstream(textstream, func, parser=PARSER): # input str-stream output str-stream pipe = parser.pipe(textstream) for doc in pipe: yield func(doc) def keepOnlyPOS(pos_list, parser=PARSER): return lambda doc : parser(" ".join([tok.text for tok in doc if tok.pos_ in pos_list])) def removeAllPOS(pos_list, parser=PARSER): return lambda doc: parser(" ".join([tok.text for tok in doc if tok.pos_ not in pos_list])) def keepOnlyENT(ent_list,parser=PARSER): return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ in ent_list])) def removeAllENT(ent_list, parser=PARSER): return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ not in ent_list])) doc2Set = lambda doc: str(set([tok.text for tok in doc])) doc2String = lambda doc : doc.text mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE) emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE) urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE) def replaceURLs(replace_with="URL",parser=PARSER): #return lambda doc: parser(textacy.preprocess.replace_urls(doc.text,replace_with=replace_with)) return lambda doc: parser(urlFinder.sub(replace_with,doc.text)) def replaceEmails(replace_with="EMAIL",parser=PARSER): #return lambda doc: parser(textacy.preprocess.replace_emails(doc.text,replace_with=replace_with)) return lambda doc : parser(emailFinder.sub(replace_with, doc.text)) def replaceTwitterMentions(replace_with="TWITTER_MENTION",parser=PARSER): return lambda doc : parser(mentionFinder.sub(replace_with, doc.text)) def replaceNumbers(replace_with="NUMBER",parser=PARSER): return lambda doc: parser(textacy.preprocess.replace_numbers(doc.text, replace_with=replace_with)) def replacePhonenumbers(replace_with="PHONE",parser=PARSER): return lambda doc: parser(textacy.preprocess.replace_phone_numbers(doc.text, replace_with=replace_with)) def resolveAbbreviations(parser=PARSER): pass #todo def removeWords(words, keep=None,parser=PARSER): if hasattr(keep, '__iter__'): for k in keep: try: words.remove(k) except ValueError: pass return lambda doc : parser(" ".join([tok.text for tok in doc if tok.lower_ not in words])) def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER): #return lambda doc : parser(" ".join([tok.lower_ for tok in doc])) return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc])) def getFirstSynonym(word, thesaurus, default_return_first_Syn=False): if not isinstance(word, str): return str(word) word = word.lower() # durch den thesaurrus iterieren for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen for syn in syn_block: syn = syn.lower() if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist if word == syn: return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)) else: # falls es ein satz ist if word in syn: return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)) return str(word) # zur Not, das ursrpüngliche Wort zurückgeben def getHauptform(syn_block, word, default_return_first_Syn=False): for syn in syn_block: syn = syn.lower() if "hauptform" in syn and len(syn.split(" ")) <= 2: # nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus for w in syn.split(" "): if not re.match(r'\([^)]+\)', w): return w if default_return_first_Syn: # falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht for w in syn_block: if not re.match(r'\([^)]+\)', w): return w return word # zur Not, das ursrpüngliche Wort zurückgeben stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) + config.get("preprocessing","custom_words").split(",") path2xml = config.get("default","path2xml") content_generator = generateMainTextfromTicketXML(path2xml) metadata_generator = generateMetadatafromTicketXML(path2xml) ents = config.get("preprocessing","ents").split(",") clean_in_content=compose( doc2String, #normalizeSynonyms(default_return_first_Syn=config.get("preprocessing","default_return_first_Syn")), replaceEmails(), replaceURLs(), replaceTwitterMentions(), removeWords(stop_words), #removeAllPOS(["SPACE","PUNCT"]), #removeAllENT(ents), keepOnlyPOS(['NOUN']) ) clean_in_meta = { "Loesung":removeAllPOS(["SPACE"]), "Zusammenfassung":removeAllPOS(["SPACE","PUNCT"]) } contentStream = processTextstream(content_generator, func=clean_in_content) metaStream = processDictstream(metadata_generator, funcdict=clean_in_meta) corpus.add_texts(contentStream,metaStream) print(corpus[0].text) printRandomDoc(corpus)