# -*- coding: utf-8 -*- import csv import functools import os.path import re import subprocess import time import xml.etree.ElementTree as ET import spacy import textacy from scipy import * from textacy import Vectorizer csv.field_size_limit(sys.maxsize) # Load the configuration file import configparser as ConfigParser config = ConfigParser.ConfigParser() with open("config.ini") as f: config.read_file(f) path2xml = config.get("default","path2xml") PARSER = spacy.load(config.get("default","language")) corpus = textacy.Corpus(PARSER) thesauruspath = config.get("default","thesauruspath") THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";")) stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) + config.get("preprocessing","custom_words").split(",") def compose(*functions): def compose2(f, g): return lambda x: f(g(x)) return functools.reduce(compose2, functions, lambda x: x) def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'): """ generates strings from XML :param path2xml: :param main_textfield: :param cleaning_function: :yields strings """ tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8")) root = tree.getroot() for ticket in root: for field in ticket: if field.tag == main_textfield: yield field.text def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']): tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8")) root = tree.getroot() for ticket in root: metadata = {} for field in ticket: if field.tag not in leave_out: metadata[field.tag] = field.text yield metadata def printRandomDoc(textacyCorpus): import random print() print("len(textacyCorpus) = %i" % len(textacyCorpus)) randIndex = int((len(textacyCorpus) - 1) * random.random()) print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata)) print() def processDictstream(dictstream, funcdict, parser=PARSER): for dic in dictstream: result = {} for key, value in dic.items(): if key in funcdict: result[key] = funcdict[key](parser(value)) else: result[key] = value yield result def processTextstream(textstream, func, parser=PARSER): # input str-stream output str-stream pipe = parser.pipe(textstream) for doc in pipe: yield func(doc) def keepOnlyPOS(pos_list, parser=PARSER): return lambda doc : parser(" ".join([tok.text for tok in doc if tok.pos_ in pos_list])) def removeAllPOS(pos_list, parser=PARSER): return lambda doc: parser(" ".join([tok.text for tok in doc if tok.pos_ not in pos_list])) def keepOnlyENT(ent_list,parser=PARSER): return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ in ent_list])) def removeAllENT(ent_list, parser=PARSER): return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ not in ent_list])) doc2Set = lambda doc: str(set([tok.text for tok in doc])) doc2String = lambda doc : doc.text mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE) emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE) urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE) def replaceURLs(replace_with="URL",parser=PARSER): #return lambda doc: parser(textacy.preprocess.replace_urls(doc.text,replace_with=replace_with)) return lambda doc: parser(urlFinder.sub(replace_with,doc.text)) def replaceEmails(replace_with="EMAIL",parser=PARSER): #return lambda doc: parser(textacy.preprocess.replace_emails(doc.text,replace_with=replace_with)) return lambda doc : parser(emailFinder.sub(replace_with, doc.text)) def replaceTwitterMentions(replace_with="TWITTER_MENTION",parser=PARSER): return lambda doc : parser(mentionFinder.sub(replace_with, doc.text)) def replaceNumbers(replace_with="NUMBER",parser=PARSER): return lambda doc: parser(textacy.preprocess.replace_numbers(doc.text, replace_with=replace_with)) def replacePhonenumbers(replace_with="PHONE",parser=PARSER): return lambda doc: parser(textacy.preprocess.replace_phone_numbers(doc.text, replace_with=replace_with)) def resolveAbbreviations(parser=PARSER): pass #todo def removeWords(words, keep=None,parser=PARSER): if hasattr(keep, '__iter__'): for k in keep: try: words.remove(k) except ValueError: pass return lambda doc : parser(" ".join([tok.text for tok in doc if tok.lower_ not in words])) def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER): #return lambda doc : parser(" ".join([tok.lower_ for tok in doc])) return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc])) def getFirstSynonym(word, thesaurus, default_return_first_Syn=False): if not isinstance(word, str): return str(word) word = word.lower() # durch den thesaurrus iterieren for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen for syn in syn_block: syn = syn.lower() if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist if word == syn: return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)) else: # falls es ein satz ist if word in syn: return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn)) return str(word) # zur Not, das ursrpüngliche Wort zurückgeben def getHauptform(syn_block, word, default_return_first_Syn=False): for syn in syn_block: syn = syn.lower() if "hauptform" in syn and len(syn.split(" ")) <= 2: # nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus for w in syn.split(" "): if not re.match(r'\([^)]+\)', w): return w if default_return_first_Syn: # falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht for w in syn_block: if not re.match(r'\([^)]+\)', w): return w return word # zur Not, das ursrpüngliche Wort zurückgeben def label2ID(label): return { 'Neuanschluss' : 0, 'LSF' : 1, 'Video' : 2, }.get(label,3) def generate_labled_lines(textacyCorpus): for doc in textacyCorpus: # generate [topic1, topic2....] tok1 tok2 tok3 out of corpus yield "[" + str(label2ID(doc.metadata["Kategorie"])) + "] " + doc.text ####################'####################'####################'####################'####################'############## ents = config.get("preprocessing","ents").split(",") clean_in_content=compose( doc2String, #normalizeSynonyms(default_return_first_Syn=config.get("preprocessing","default_return_first_Syn")), replaceEmails(), replaceURLs(), replaceTwitterMentions(), removeWords(stop_words), #removeAllPOS(["SPACE","PUNCT"]), #removeAllENT(ents), keepOnlyPOS(['NOUN']) ) clean_in_meta = { "Loesung":removeAllPOS(["SPACE"]), "Zusammenfassung":removeAllPOS(["SPACE","PUNCT"]) } ## add files to textacy-corpus, print("add texts to textacy-corpus...") corpus.add_texts( processTextstream(generateMainTextfromTicketXML(path2xml), func=clean_in_content), processDictstream(generateMetadatafromTicketXML(path2xml), funcdict=clean_in_meta) ) printRandomDoc(corpus) ####################'####################' Variablen todo alles in config ngrams = (1,2) min_df = 0 max_df = 1.0 no_below = 20 no_above = 0.5 topicModel = 'lda' # http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix weighting = ('tf' if topicModel == 'lda' else 'tfidf') top_topic_words = 5 top_document_labels_per_topic = 2 n_topics = 4 ####################'#################### print("vectorize corpus...") vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df) terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus) doc_term_matrix = vectorizer.fit_transform(terms_list) id2term = vectorizer.__getattribute__("id_to_term") ##################### LSA, LDA, NMF Topic Modeling via Textacy ############################################## # Initialize and train a topic model print("Initialize and train a topic model") model = textacy.tm.TopicModel(topicModel, n_topics=n_topics) model.fit(doc_term_matrix) #Transform the corpus and interpret our model: print("Transform the corpus and interpret our model") doc_topic_matrix = model.transform(doc_term_matrix) print() for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words): print('topic', topic_idx, ':', ' '.join(top_terms)) print() for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic): print(topic_idx) for j in top_docs: print(corpus[j].metadata['Kategorie']) ##################################################################################################################### print() print() ##################### LLDA Topic Modeling via JGibbsLabledLDA ############################################## jgibbsLLDA_root = "java_LabledLDA/" filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root) #create file textacy.fileio.write_file_lines(generate_labled_lines(corpus),filepath=filepath) # wait for file to exist while not os.path.exists(filepath): time.sleep(1) print("start LLDA..") #run JGibsslda file FNULL = open(os.devnull, 'w') # supress output subprocess.call(["java", "-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root), "jgibblda.LDA", "-est", "-dir", "{0}models/tickets".format(jgibbsLLDA_root), "-dfile","tickets.gz", "-ntopics", str(n_topics)], stdout = FNULL) # ANMERKUNG: Dateien sind versteckt. zu finden in models/ #print twords subprocess.call(["gzip", "-dc", "{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)]) ##################################################################################################################### print() print()