# -*- coding: utf-8 -*- import time start = time.time() import logging import csv import functools import os.path import re import subprocess import time import xml.etree.ElementTree as ET import sys import spacy import textacy from scipy import * from textacy import Vectorizer import warnings import configparser as ConfigParser import sys csv.field_size_limit(sys.maxsize) # Load the configuration file config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini" config = ConfigParser.ConfigParser() with open(config_ini) as f: config.read_file(f) # config logging logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO) thesauruspath = config.get("filepath","thesauruspath") THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";")) DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen de_stop_words=list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) LEMMAS=config.get("filepath","lemmas") VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt")) regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|?]' regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?' mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE) emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE) urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE) topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE) specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE) hardSFinder = re.compile(r'[ß]', re.IGNORECASE) def printlog(string, level="INFO"): """log and prints""" print(string) if level=="INFO": logging.info(string) elif level=="DEBUG": logging.debug(string) elif level == "WARNING": logging.warning(string) printlog("Load functions") def compose(*functions): def compose2(f, g): return lambda x: f(g(x)) return functools.reduce(compose2, functions, lambda x: x) def get_calling_function(): """finds the calling function in many decent cases. https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name """ fr = sys._getframe(1) # inspect.stack()[1][0] co = fr.f_code for get in ( lambda:fr.f_globals[co.co_name], lambda:getattr(fr.f_locals['self'], co.co_name), lambda:getattr(fr.f_locals['cls'], co.co_name), lambda:fr.f_back.f_locals[co.co_name], # nested lambda:fr.f_back.f_locals['func'], # decorators lambda:fr.f_back.f_locals['meth'], lambda:fr.f_back.f_locals['f'], ): try: func = get() except (KeyError, AttributeError): pass else: if func.__code__ == co: return func raise AttributeError("func not found") def printRandomDoc(textacyCorpus): import random print() printlog("len(textacyCorpus) = %i" % len(textacyCorpus)) randIndex = int((len(textacyCorpus) - 1) * random.random()) printlog("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata)) print() def csv_to_contentStream(path2csv: str, content_collumn_name: str): """ :param path2csv: string :param content_collumn_name: string :return: string-generator """ stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8') content_collumn = 0 # standardvalue for i,lst in enumerate(stream): if i == 0: # look for desired column for j,col in enumerate(lst): if col == content_collumn_name: content_collumn = j else: yield lst[content_collumn] ############# return bool def keepPOS(pos_list): return lambda tok : tok.pos_ in pos_list def removePOS(pos_list): return lambda tok : tok.pos_ not in pos_list def removeWords(words, keep=None): if hasattr(keep, '__iter__'): for k in keep: try: words.remove(k) except ValueError: pass return lambda tok : tok.lower_ not in words def keepENT(ent_list): return lambda tok : tok.ent_type_ in ent_list def removeENT(ent_list): return lambda tok: tok.ent_type_ not in ent_list def remove_words_containing_Numbers(): return lambda tok: not bool(re.search('\d', tok.lower_)) def remove_words_containing_specialCharacters(): return lambda tok: not bool(re.search(regex_specialChars, tok.lower_)) def remove_long_words(): return lambda tok: not len(tok.lower_) < 2 def remove_short_words(): return lambda tok: not len(tok.lower_) > 35 def remove_first_names(): return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN] #falls wort nicht in vocab, erst schauen ob teilwort bekannt ist, falls ja, schauen ob es davor oder danach bullshit stehen hat. ggf trennen ############# strings def stringcleaning(stringstream, funclist): for string in stringstream: for f in funclist: string = f(string) yield string def seperate_words_on_regex(regex=regex_specialChars): return lambda string: " ".join(re.compile(regex).split(string)) def remove_words_containing_topLVL(): return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ]) def replaceSpecialChars(replace_with=" "): return lambda string: re.sub(regex_specialChars, replace_with, string.lower()) def replaceNumbers(replace_with="NUMBER"): return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with) def replacePhonenumbers(replace_with="PHONENUMBER"): return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with) def replaceSharpS(replace_with="ss"): return lambda string: re.sub(r'[ß]',replace_with,string.lower()) def replaceRockDots(): return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower()))))))) def fixUnicode(): return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC') def lemmatizeWord(word,filepath=LEMMAS): """http://www.lexiconista.com/datasets/lemmatization/""" for line in list(textacy.fileio.read_file_lines(filepath=filepath)): if word.lower() == line.split()[1].strip().lower(): return line.split()[0].strip().lower() return word.lower() # falls nix gefunden wurde def lemmatize(): #todo https://alpha.spacy.io/docs/usage/adding-languages#lemmatizer return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc]) def processTextstream(textstream, string_funclist, tok_funclist, parser=DE_PARSER, single_doc_func=None): """ :param textstream: string-gen :param funclist: [func] :param parser: spacy-parser :return: string-gen """ #zuerst die string-methoden pipe = parser.pipe(stringcleaning(textstream,string_funclist)) tokens=[] for doc in pipe: tokens = [tok for tok in doc] #dann die auf tokens tokens = processTokens(tokens,tok_funclist) if single_doc_func is not None: yield single_doc_func(parser(" ".join([tok.lower_ for tok in tokens]))) else: yield " ".join([tok.lower_ for tok in tokens]) def processTokens(tokens, funclist): # in:tokenlist, funclist # out: tokenlist for f in funclist: tokens = list(filter(f, tokens)) return tokens string_comp=[ fixUnicode(), replaceRockDots(), remove_words_containing_topLVL(), seperate_words_on_regex() ] tok_comp=[ #removeENT(["PERSON"]), remove_words_containing_Numbers(), removePOS(["PUNCT","SPACE","NUM"]), removeWords(de_stop_words), remove_long_words(), remove_short_words(), remove_first_names(), #keepPOS(["NOUN"]), ] single_doc_func = lemmatize() """ pipe=[ ##String fixUnicode(), replaceHardS(), resolveAbbrivations(), remove_words_containing_topLVL(), replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt remove_words_containing_Numbers(), ##spacyParse removeENT("PERSON"), keepPOS(["NOUN"]), #ODER lemmatize(), removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")), # evtl. spellCorrection(), keepUniqeTokens(), ] """ path2csv = "M42-Export/Tickets_med.csv" ticketcorpus = textacy.Corpus(DE_PARSER) ## add files to textacy-corpus, printlog("add texts to textacy-corpus") ticketcorpus.add_texts( processTextstream(csv_to_contentStream(path2csv,"Description"), string_funclist=string_comp, tok_funclist=tok_comp, single_doc_func=single_doc_func) ) for i in range(10): printRandomDoc(ticketcorpus) """ spracherkennung alles nach grüße ist irrelevant außer PS: vllt kategorien in unterkategorien aufteilen allg: utf-korregieren, emails, urls, nummern raus vllt sogar alles, was ebend jenes enthält (oder auf .toplvldomain bzw. sonderzeichen enthält oder alles was ein @ enthält sinnvoller wörter von müll trennen: 8203;verfügung -> bei sonderzeichen wörter trennen abkürzungen raus: m.a, o.ä. wörter korrigieren sinnlose bsp: nr54065467 455a33c5 tvt?= ------problem-------- """