694 lines
18 KiB
Python
694 lines
18 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
import time
|
|
start = time.time()
|
|
|
|
import logging
|
|
|
|
import csv
|
|
import functools
|
|
import os.path
|
|
import re
|
|
import subprocess
|
|
import time
|
|
import xml.etree.ElementTree as ET
|
|
import sys
|
|
import spacy
|
|
import textacy
|
|
from scipy import *
|
|
from textacy import Vectorizer
|
|
import warnings
|
|
import configparser as ConfigParser
|
|
import sys
|
|
|
|
|
|
csv.field_size_limit(sys.maxsize)
|
|
|
|
|
|
|
|
|
|
# Load the configuration file
|
|
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
|
|
|
|
config = ConfigParser.ConfigParser()
|
|
with open(config_ini) as f:
|
|
config.read_file(f)
|
|
|
|
|
|
|
|
|
|
# config logging
|
|
logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
|
|
|
|
|
|
|
thesauruspath = config.get("filepath","thesauruspath")
|
|
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
|
|
|
|
|
DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen
|
|
de_stop_words=list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)
|
|
|
|
|
|
LEMMAS=config.get("filepath","lemmas")
|
|
|
|
|
|
|
|
############# misc
|
|
|
|
def printlog(string, level="INFO"):
|
|
"""log and prints"""
|
|
print(string)
|
|
if level=="INFO":
|
|
logging.info(string)
|
|
elif level=="DEBUG":
|
|
logging.debug(string)
|
|
elif level == "WARNING":
|
|
logging.warning(string)
|
|
printlog("Load functions")
|
|
|
|
def compose(*functions):
|
|
def compose2(f, g):
|
|
return lambda x: f(g(x))
|
|
return functools.reduce(compose2, functions, lambda x: x)
|
|
|
|
def get_calling_function():
|
|
"""finds the calling function in many decent cases.
|
|
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
|
|
"""
|
|
fr = sys._getframe(1) # inspect.stack()[1][0]
|
|
co = fr.f_code
|
|
for get in (
|
|
lambda:fr.f_globals[co.co_name],
|
|
lambda:getattr(fr.f_locals['self'], co.co_name),
|
|
lambda:getattr(fr.f_locals['cls'], co.co_name),
|
|
lambda:fr.f_back.f_locals[co.co_name], # nested
|
|
lambda:fr.f_back.f_locals['func'], # decorators
|
|
lambda:fr.f_back.f_locals['meth'],
|
|
lambda:fr.f_back.f_locals['f'],
|
|
):
|
|
try:
|
|
func = get()
|
|
except (KeyError, AttributeError):
|
|
pass
|
|
else:
|
|
if func.__code__ == co:
|
|
return func
|
|
raise AttributeError("func not found")
|
|
|
|
|
|
def printRandomDoc(textacyCorpus):
|
|
import random
|
|
print()
|
|
|
|
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
printlog("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
|
|
print()
|
|
|
|
############# load xml
|
|
def generateMainTextfromTicketXML(path2xml, main_textfield='Description'):
|
|
"""
|
|
generates strings from XML
|
|
:param path2xml:
|
|
:param main_textfield:
|
|
:param cleaning_function:
|
|
:yields strings
|
|
"""
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for ticket in root:
|
|
for field in ticket:
|
|
if field.tag == main_textfield:
|
|
yield field.text
|
|
|
|
def generateMetadatafromTicketXML(path2xml, leave_out=['Description']):
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for ticket in root:
|
|
metadata = {}
|
|
for field in ticket:
|
|
if field.tag not in leave_out:
|
|
|
|
metadata[field.tag] = field.text
|
|
|
|
yield metadata
|
|
|
|
|
|
############# load csv
|
|
|
|
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|
"""
|
|
:param path2csv: string
|
|
:param content_collumn_name: string
|
|
:return: string-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
content_collumn = 0 # standardvalue
|
|
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
# look for desired column
|
|
for j,col in enumerate(lst):
|
|
if col == content_collumn_name:
|
|
content_collumn = j
|
|
else:
|
|
yield lst[content_collumn]
|
|
|
|
def csv_to_metaStream(path2csv: str, metalist: [str]):
|
|
"""
|
|
:param path2csv: string
|
|
:param metalist: list of strings
|
|
:return: dict-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
|
|
content_collumn = 0 # standardvalue
|
|
metaindices = []
|
|
metadata_temp = {}
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
for j,col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
|
|
for key in metalist:
|
|
if key == col:
|
|
metaindices.append(j)
|
|
metadata_temp = dict(zip(metalist,metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
|
|
|
|
else:
|
|
metadata = metadata_temp.copy()
|
|
for key,value in metadata.items():
|
|
metadata[key] = lst[value]
|
|
yield metadata
|
|
|
|
|
|
|
|
############################################ Preprocessing ##############################################
|
|
|
|
|
|
############# on str-gen
|
|
|
|
def processTokens(tokens, funclist, parser):
|
|
# in:tokenlist, funclist
|
|
# out: tokenlist
|
|
for f in funclist:
|
|
# idee: funclist sortieren,s.d. erst alle string-methoden ausgeführt werden, dann wird geparesed, dann wird auf tokens gearbeitet, dann evtl. auf dem ganzen Doc
|
|
|
|
if 'bool' in str(f.__annotations__):
|
|
tokens = list(filter(f, tokens))
|
|
|
|
elif 'str' in str(f.__annotations__):
|
|
tokens = list(map(f, tokens)) # purer text
|
|
doc = parser(" ".join(tokens)) # neu parsen
|
|
tokens = [tok for tok in doc] # nur tokens
|
|
|
|
elif 'spacy.tokens.doc.Doc' in str(f.__annotations__):
|
|
#todo wirkt gefrickelt
|
|
doc = parser(" ".join(tok.lower_ for tok in tokens)) # geparsed
|
|
tokens = f(doc)
|
|
doc = parser(" ".join(tokens)) # geparsed
|
|
tokens = [tok for tok in doc] # nur tokens
|
|
else:
|
|
warnings.warn("Unknown Annotation while preprocessing. Function: {0}".format(str(f)))
|
|
|
|
return tokens
|
|
|
|
def processTextstream(textstream, funclist, parser=DE_PARSER):
|
|
"""
|
|
:param textstream: string-gen
|
|
:param funclist: [func]
|
|
:param parser: spacy-parser
|
|
:return: string-gen
|
|
"""
|
|
# input:str-stream output:str-stream
|
|
pipe = parser.pipe(textstream)
|
|
|
|
for doc in pipe:
|
|
|
|
tokens = []
|
|
for tok in doc:
|
|
tokens.append(tok)
|
|
|
|
tokens = processTokens(tokens,funclist,parser)
|
|
yield " ".join([tok.lower_ for tok in tokens])
|
|
|
|
def processDictstream(dictstream, funcdict, parser=DE_PARSER):
|
|
"""
|
|
|
|
:param dictstream: dict-gen
|
|
:param funcdict:
|
|
clean_in_meta = {
|
|
"Solution":funclist,
|
|
...
|
|
}
|
|
|
|
:param parser: spacy-parser
|
|
:return: dict-gen
|
|
"""
|
|
for dic in dictstream:
|
|
result = {}
|
|
for key, value in dic.items():
|
|
|
|
if key in funcdict:
|
|
|
|
doc = parser(value)
|
|
tokens = [tok for tok in doc]
|
|
funclist = funcdict[key]
|
|
|
|
tokens = processTokens(tokens,funclist,parser)
|
|
|
|
|
|
result[key] = " ".join([tok.lower_ for tok in tokens])
|
|
|
|
|
|
else:
|
|
result[key] = value
|
|
yield result
|
|
|
|
|
|
############# return bool
|
|
|
|
def keepPOS(pos_list) -> bool:
|
|
ret = lambda tok : tok.pos_ in pos_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def removePOS(pos_list)-> bool:
|
|
ret = lambda tok : tok.pos_ not in pos_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def removeWords(words, keep=None)-> bool:
|
|
if hasattr(keep, '__iter__'):
|
|
for k in keep:
|
|
try:
|
|
words.remove(k)
|
|
except ValueError:
|
|
pass
|
|
|
|
ret = lambda tok : tok.lower_ not in words
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def keepENT(ent_list) -> bool:
|
|
ret = lambda tok : tok.ent_type_ in ent_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def removeENT(ent_list) -> bool:
|
|
ret = lambda tok: tok.ent_type_ not in ent_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def remove_words_containing_Numbers() -> bool:
|
|
ret = lambda tok: not bool(re.search('\d', tok.lower_))
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def remove_words_containing_specialCharacters() -> bool:
|
|
ret = lambda tok: not bool(re.search(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./<>?]', tok.lower_))
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def remove_words_containing_topLVL() -> bool:
|
|
ret = lambda tok: not bool(re.search(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', tok.lower_))
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def lemmatizeWord(word,filepath=LEMMAS):
|
|
"""http://www.lexiconista.com/datasets/lemmatization/"""
|
|
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
|
|
if word.lower() == line.split()[1].strip().lower():
|
|
return line.split()[0].strip().lower()
|
|
return word.lower() # falls nix gefunden wurde
|
|
|
|
def lemmatize() -> str:
|
|
ret = lambda tok: lemmatizeWord(tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
############# return strings
|
|
|
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
|
|
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
|
|
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
|
|
|
|
|
|
|
|
def replaceEmails(replace_with="EMAIL") -> str:
|
|
ret = lambda tok : emailFinder.sub(replace_with, tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceURLs(replace_with="URL") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_urls(tok.lower_,replace_with=replace_with)
|
|
#ret = lambda tok: urlFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceSpecialChars(replace_with=" ") -> str:
|
|
ret = lambda tok: specialFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def replaceTwitterMentions(replace_with="TWITTER_MENTION") -> str:
|
|
ret = lambda tok : mentionFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceNumbers(replace_with="NUMBER") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_numbers(tok.lower_, replace_with=replace_with)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replacePhonenumbers(replace_with="PHONENUMBER") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_phone_numbers(tok.lower_, replace_with=replace_with)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceHardS(replace_with="ss") -> str:
|
|
ret = lambda tok: hardSFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def fixUnicode() -> str:
|
|
ret = lambda tok: textacy.preprocess.fix_bad_unicode(tok.lower_, normalization=u'NFC')
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def resolveAbbreviations():
|
|
pass #todo
|
|
|
|
#todo wörter mit len < 2 entfernen( vorher abkürzungen (v.a. tu und fh) auflösen) und > 35 oder 50 ("Reiserücktrittskostenversicherung)
|
|
|
|
############# return docs
|
|
|
|
def keepUniqeTokens() -> spacy.tokens.Doc:
|
|
ret = lambda doc: (set([tok.lower_ for tok in doc]))
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def lower() -> spacy.tokens.Doc:
|
|
ret = lambda doc: ([tok.lower_ for tok in doc])
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
################################################################################################################
|
|
|
|
|
|
path2xml = config.get("filepath","path2xml")
|
|
|
|
|
|
|
|
path2csv = config.get("filepath","path2csv")
|
|
path2csv = "M42-Export/Tickets_med.csv"
|
|
printlog("CSV: {0}".format(path2csv))
|
|
|
|
|
|
ticketcorpus = textacy.Corpus(DE_PARSER)
|
|
|
|
|
|
|
|
"""
|
|
vllt kategorien in unterkategorien aufteilen
|
|
|
|
allg:
|
|
utf-korregieren, bei sonderzeichen wörter trennen
|
|
namen raus, addressen nach grüßen
|
|
|
|
emails, urls, nummern raus
|
|
vllt sogar alles, was ebend jenes enthält (oder auf .toplvldomain bzw. sonderzeichen enthält oder alles was ein @ enthält
|
|
|
|
sinnvoller wörter von müll trennen: 8203;verfügung
|
|
|
|
abkürzungen raus: m.a, o.ä.
|
|
|
|
|
|
sinnlose bsp: nr54065467 455a33c5 tvt?= ------problem--------
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
metaliste = [
|
|
"Subject",
|
|
"categoryName",
|
|
"Solution"
|
|
]
|
|
|
|
clean_in_meta = {
|
|
"Solution":[removePOS(["SPACE"]),lower()],
|
|
"Subject":[removePOS(["SPACE","PUNCT"]),lower()],
|
|
"categoryName": [removePOS(["SPACE", "PUNCT"]), lower()]
|
|
|
|
}
|
|
|
|
|
|
printlog("Start Preprocessing")
|
|
|
|
clean_in_content=[
|
|
replaceHardS(),
|
|
replaceSpecialChars(),
|
|
|
|
remove_words_containing_topLVL(),
|
|
remove_words_containing_Numbers(),
|
|
remove_words_containing_specialCharacters(),
|
|
|
|
#removePOS(["SPACE","PUNCT","NUM"]),
|
|
#removeENT("PERSON"),
|
|
|
|
#keepPOS(["NOUN"]),
|
|
|
|
|
|
#replaceURLs(),
|
|
#replaceEmails(),
|
|
#fixUnicode(),
|
|
|
|
lemmatize(),
|
|
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
|
|
|
|
#keepUniqeTokens(),
|
|
#keepENT(config.get("preprocessing","ents2keep"))
|
|
|
|
]
|
|
|
|
|
|
|
|
## add files to textacy-corpi,
|
|
printlog("add texts to textacy-corpi")
|
|
ticketcorpus.add_texts(
|
|
processTextstream(csv_to_contentStream(path2csv,"Description"), clean_in_content),
|
|
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
|
|
)
|
|
|
|
for i in range(10):
|
|
printRandomDoc(ticketcorpus)
|
|
|
|
|
|
end = time.time()
|
|
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
|
|
|
|
|
|
|
|
|
|
|
############################################ Topic Modeling #############################################
|
|
print("\n\n")
|
|
start = time.time()
|
|
|
|
|
|
|
|
# build citionary of ticketcategories
|
|
labelist = []
|
|
|
|
for texdoc in ticketcorpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
|
|
labelist.append(texdoc.metadata["categoryName"])
|
|
|
|
|
|
LABELDICT = {k: v for v, k in enumerate(labelist)}
|
|
print(LABELDICT)
|
|
|
|
|
|
|
|
def label2ID(label,labeldict=LABELDICT):
|
|
return labeldict.get(label,len(labeldict))
|
|
|
|
def generate_labled_lines(textacyCorpus):
|
|
for doc in textacyCorpus:
|
|
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpi
|
|
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####################'####################' todo alles in config
|
|
|
|
ngrams = 1
|
|
|
|
min_df = 0
|
|
max_df = 1.0
|
|
no_below = 20
|
|
no_above = 0.5
|
|
|
|
topicModel = 'lda'
|
|
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
|
|
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
|
|
|
top_topic_words = 7
|
|
top_document_labels_per_topic = 2
|
|
|
|
n_topics = len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####################'####################
|
|
|
|
|
|
|
|
|
|
printlog("vectorize corpi...")
|
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
|
|
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in ticketcorpus)
|
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
|
id2term = vectorizer.__getattribute__("id_to_term")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
|
|
|
|
# Initialize and train a topic model
|
|
printlog("Initialize and train a topic model..")
|
|
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
|
|
model.fit(doc_term_matrix)
|
|
|
|
#Transform the corpi and interpret our model:
|
|
printlog("Transform the corpi and interpret our model..")
|
|
doc_topic_matrix = model.transform(doc_term_matrix)
|
|
print()
|
|
|
|
|
|
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
|
|
print('topic', topic_idx, ':', ' '.join(top_terms))
|
|
|
|
|
|
print()
|
|
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
|
print(topic_idx)
|
|
for j in top_docs:
|
|
print(ticketcorpus[j].metadata['categoryName'])
|
|
|
|
#####################################################################################################################
|
|
print()
|
|
print()
|
|
|
|
"""
|
|
|
|
|
|
|
|
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
|
|
|
|
|
|
|
|
jgibbsLLDA_root = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/java_LabledLDA/"
|
|
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
|
|
|
|
|
#create file
|
|
textacy.fileio.write_file_lines(generate_labled_lines(ticketcorpus), filepath=LLDA_filepath)
|
|
|
|
|
|
# wait for file to exist
|
|
while not os.path.exists(LLDA_filepath):
|
|
time.sleep(1)
|
|
|
|
print("\n\n")
|
|
printlog("start LLDA:")
|
|
#run JGibsslda file
|
|
FNULL = open(os.devnull, 'w') # supress output
|
|
subprocess.call(["java",
|
|
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
|
|
"jgibblda.LDA",
|
|
"-est",
|
|
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
|
|
"-dfile","tickets.gz",
|
|
"-twords",str(top_topic_words),
|
|
"-ntopics", str(n_topics)], stdout = FNULL)
|
|
|
|
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
|
|
|
#twords
|
|
subprocess.call(["gzip",
|
|
"-dc",
|
|
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
|
|
#####################################################################################################################
|
|
print()
|
|
print()
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end = time.time()
|
|
printlog("\n\n\nTime Elapsed Topic Modeling:{0}\n\n".format(end - start)) |