topicModelingTickets/testra.py

370 lines
9.5 KiB
Python

# -*- coding: utf-8 -*-
import re
import time
import spacy
import textacy
start = time.time()
from datetime import datetime
import xml.etree.ElementTree as ET
print(datetime.now())
nomen=[]
#PARSER=spacy.load("de")
#todo: thesaurus....yay...
"""
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
#return lambda doc : parser(" ".join([tok.lower_ for tok in doc]))
return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc]))
def getFirstSynonym(word, thesaurus, default_return_first_Syn=False):
if not isinstance(word, str):
return str(word)
word = word.lower()
# durch den thesaurrus iterieren
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
for syn in syn_block:
syn = syn.lower()
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
if word == syn:
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
else: # falls es ein satz ist
if word in syn:
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
return str(word) # zur Not, das ursrpüngliche Wort zurückgeben
def getHauptform(syn_block, word, default_return_first_Syn=False):
for syn in syn_block:
syn = syn.lower()
if "hauptform" in syn and len(syn.split(" ")) <= 2:
# nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus
for w in syn.split(" "):
if not re.match(r'\([^)]+\)', w):
return w
if default_return_first_Syn:
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
for w in syn_block:
if not re.match(r'\([^)]+\)', w):
return w
return word # zur Not, das ursrpüngliche Wort zurückgeben
"""
### extract from deWordNet.xml
#https://github.com/hdaSprachtechnologie/odenet
#idee synsets bilden
"""
path2xml="/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deWordNet.xml"
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
for r in root:
for element in r:
if element.tag == "Synset":
attrib = element.attrib
for i,subentry in enumerate(element):
if subentry.tag == "Lemma" and subentry.attrib["partOfSpeech"] == "n":
string = (subentry.attrib["writtenForm"])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# seperate_words_on_regex:
string = " ".join(re.compile(regex_specialChars).split(string))
string_list=string.split()
if len(string_list) == 1:
nomen.append(string.lower().strip())
"""
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
lextree = ET.parse(lexicalentries, ET.XMLParser(encoding="utf-8"))
syntree = ET.parse(synsets, ET.XMLParser(encoding="utf-8"))
lexroot = lextree.getroot()
synroot = syntree.getroot()
for r in synroot:
for element in r:
if element.tag == "Synset":
sysnet = []
attrib = element.attrib
id = attrib["id"]
for ro in lexroot:
for elem in ro:
if elem.tag == "LexicalEntry":
subs_dicts = [subentry.attrib for subentry in elem]
#<class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
dic = {k:v for x in subs_dicts for k,v in x.items()} # to one dict
if "synset" in dic.keys():
if dic["synset"] == id:
if id == "de-1004-n":
x = 0
string = (dic["writtenForm"])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# alle punkte raus
string = re.sub(r'[.]', "", string)
# alles in klammern raus
stringlist = string.split()
strings=[]
for w in stringlist:
if not bool(re.match(r'/\(([^)]+)\)/', w)): #todo funzt nich wie's soll
strings.append(w)
string = " ".join(strings)
#re.sub(r'/\(([^)]+)\)/', " ", string)
sysnet.append(string.lower().strip())
print(id,sysnet)
"""
### extract from derewo
#http://www1.ids-mannheim.de/kl/projekte/methoden/derewo.html
raw = textacy.fileio.read_file_lines("DeReKo-2014-II-MainArchive-STT.100000.freq")
for line in raw:
line_list=line.split()
if line_list[2] == "NN":
string = line_list[1].lower()
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
nomen.append(string.lower().strip())
textacy.fileio.write_file_lines(nomen,"nomen2.txt")
"""
"""
stream = textacy.fileio.read_csv("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_2017-09-13.csv", delimiter=";")
content_collumn_name = "Description"
content_collumn = 9 # standardvalue
de_tickets=[]
en_tickets=[]
misc_tickets=[]
error_count = 0
for i, lst in enumerate(stream):
if i == 0:
de_tickets.append(lst)
en_tickets.append(lst)
misc_tickets.append(lst)
else:
try:
content_collumn_ = lst[content_collumn]
if detect(content_collumn_) == "de":
de_tickets.append(lst)
elif detect(content_collumn_) == "en":
en_tickets.append(lst)
else:
misc_tickets.append(lst)
except:
misc_tickets.append(lst)
error_count += 1
print(error_count)
textacy.fileio.write_csv(de_tickets,"M42-Export/de_tickets.csv", delimiter=";")
textacy.fileio.write_csv(en_tickets,"M42-Export/en_tickets.csv", delimiter=";")
textacy.fileio.write_csv(misc_tickets,"M42-Export/misc_tickets.csv", delimiter=";")
"""
"""
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
def stringcleaning(stringstream, funclist):
for string in stringstream:
for f in funclist:
string = f(string)
yield string
def seperate_words_on_regex(regex=regex_specialChars):
return lambda string: " ".join(re.compile(regex).split(string))
words = [
"uniaccount",
"nr54065467",
"nr54065467",
"455a33c5,"
"tvt?=",
"tanja.saborowski@tu-dortmund.de",
"-",
"m-sw1-vl4053.itmc.tu-dortmund.de",
"------problem--------"
]
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
for s in stringcleaning((w for w in words),[seperate_words_on_regex()]):
print(s.strip())
#print(stringcleaning(w,string_comp))
#print(bool(re.search(r'\.[a-z]{2,3}(\.[a-z]{2,3})?',w)))
#print(bool(re.search(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]',w)))
#result = specialFinder.sub(" ", w)
#print(re.sub(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]'," ",w))
#print(re.sub(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', " ", w))
"""
"""
def replaceRockDots():
return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
de_stop_words = list(textacy.fileio.read_file_lines(filepath="german_stopwords_full.txt"))
#blob = Text(str(textacy.fileio.read_file("teststring.txt")))#,parser=PatternParser(pprint=True, lemmata=True))
#print(blob.entities)
de_stop_words = list(map(replaceRockDots(),de_stop_words))
#LEMMAS = list(map(replaceRockDots(),LEMMAS))
#VORNAMEN = list(map(replaceRockDots(),VORNAMEN))
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,de_stop_words))
#LEMMAS = list(map(textacy.preprocess.normalize_whitespace,LEMMAS))
#VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,VORNAMEN))
#textacy.fileio.write_file_lines(LEMMAS,"lemmas.txt")
#textacy.fileio.write_file_lines(VORNAMEN,"firstnames.txt")
textacy.fileio.write_file_lines(de_stop_words,"german_stopwords.txt")
"""
end = time.time()
print("\n\n\nTime Elapsed Topic:{0}\n\n".format(end - start))