1153 lines
47 KiB
Python
1153 lines
47 KiB
Python
# -*- coding: utf-8 -*-
|
||
import matplotlib
|
||
matplotlib.use('Agg')
|
||
from datetime import datetime
|
||
import csv
|
||
import sys
|
||
|
||
from textacy import Vectorizer
|
||
|
||
import draw1
|
||
from miscellaneous import *
|
||
from datetime import datetime
|
||
import time
|
||
import textacy
|
||
from scipy import *
|
||
from scipy.stats import threshold
|
||
import draw
|
||
from spacy.tokens.token import Token as SpacyToken
|
||
from spacy.tokens.span import Span as SpacySpan
|
||
from topicModeling import jgibbsLLDAv2
|
||
import os
|
||
from ressources.iir.lda.llda import *
|
||
|
||
csv.field_size_limit(sys.maxsize)
|
||
FILEPATH = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||
|
||
|
||
|
||
# load config
|
||
config_ini = FILEPATH + "config.ini"
|
||
ressources_path = FILEPATH + "ressources/"
|
||
|
||
config = ConfigParser.ConfigParser()
|
||
with open(config_ini) as f:
|
||
config.read_file(f)
|
||
"""
|
||
def init_glabal_vars():
|
||
global THESAURUS, WORDS, LEMMAS, NOUNS, VORNAMEN, DE_STOP_WORDS, EN_STOP_WORDS, WHITELIST, FOOTER_FLAG, CURRENT_TICKET
|
||
|
||
THESAURUS = {}
|
||
WORDS= {}
|
||
LEMMAS= {}
|
||
NOUNS= {}
|
||
VORNAMEN= {}
|
||
DE_STOP_WORDS= {}
|
||
EN_STOP_WORDS= {}
|
||
WHITELIST= {}
|
||
CURRENT_TICKET = ""
|
||
|
||
|
||
|
||
REGEX_SPECIALCHAR = r'[`\-=~%^&*()_+\[\]{};\'\\:"|</>]' #+r',.'
|
||
REGEX_TOPLVL = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
|
||
"""
|
||
|
||
|
||
|
||
"""
|
||
THESAURUS = {}
|
||
WORDS= {}
|
||
LEMMAS= {}
|
||
NOUNS= {}
|
||
VORNAMEN= {}
|
||
DE_STOP_WORDS= {}
|
||
EN_STOP_WORDS= {}
|
||
|
||
|
||
|
||
############# filter tokens
|
||
|
||
|
||
def filterTokens(tokens, funclist):
|
||
# in:tokenlist, funclist
|
||
# out: tokenlist
|
||
for f in funclist:
|
||
tokens = list(filter(f, tokens))
|
||
|
||
for tok in tokens:
|
||
if tok.pos_ =="NOUN":
|
||
x=0
|
||
|
||
return tokens
|
||
|
||
|
||
def keepPOS(pos_list):
|
||
return lambda tok: tok.pos_ in pos_list
|
||
|
||
|
||
def keepNouns(noun_list=NOUNS):
|
||
#return lambda tok: tok.lower_ in noun_list
|
||
return lambda tok: tok.lower_ in noun_list or tok.pos_ == "NOUN"
|
||
|
||
|
||
|
||
def removePOS(pos_list):
|
||
return lambda tok: tok.pos_ not in pos_list
|
||
|
||
|
||
def removeWords(words, keep=None):
|
||
if hasattr(keep, '__iter__'):
|
||
for k in keep:
|
||
try:
|
||
words.remove(k)
|
||
except ValueError:
|
||
pass
|
||
|
||
return lambda tok: tok.lower_ not in words
|
||
|
||
|
||
def keepENT(ent_list):
|
||
return lambda tok: tok.ent_type_ in ent_list
|
||
|
||
|
||
def removeENT(ent_list):
|
||
return lambda tok: tok.ent_type_ not in ent_list
|
||
|
||
|
||
def remove_words_containing_Numbers():
|
||
return lambda tok: not bool(re.search('\d', tok.lower_))
|
||
|
||
|
||
def remove_words_containing_topLVL():
|
||
return lambda tok: not bool(re.search(REGEX_TOPLVL, tok.lower_))
|
||
|
||
|
||
def remove_words_containing_specialCharacters():
|
||
return lambda tok: not bool(re.search(REGEX_SPECIALCHAR, tok.lower_))
|
||
|
||
|
||
def remove_long_words():
|
||
return lambda tok: not len(tok.lower_) < 2
|
||
|
||
|
||
def remove_short_words():
|
||
return lambda tok: not len(tok.lower_) > 35
|
||
|
||
|
||
def remove_first_names():
|
||
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
|
||
|
||
|
||
############# strings
|
||
"""
|
||
def remove_addresses(string):
|
||
pass # todo remove_addresses idee postal.parser und zu metadaten hinzufügen
|
||
|
||
def lemmatizeWord(word,lemma_dict,n=5):
|
||
for i in range(n):
|
||
try:
|
||
word = lemma_dict[word.lower()] if word.lower() in lemma_dict.keys() else word.lower()
|
||
except:
|
||
print(word)
|
||
return word
|
||
|
||
|
||
def getFirstSynonym(word, thesaurus, n=3):
|
||
|
||
for i in range(n):
|
||
|
||
try:
|
||
if word in thesaurus.keys():
|
||
return thesaurus[word]
|
||
|
||
elif word.title() in thesaurus.keys():
|
||
return thesaurus[word.title()]
|
||
|
||
elif word.lower() in thesaurus.keys():
|
||
return thesaurus[word.lower()]
|
||
|
||
else:
|
||
return word
|
||
|
||
|
||
|
||
except:
|
||
print("THESAURUSFEHLER BEI: {}".format(word))
|
||
return word
|
||
|
||
"""
|
||
############# stringcleaning
|
||
|
||
|
||
def processContentstream(textstream, parser, token_filterlist=None):
|
||
|
||
#pre parse
|
||
textstream = preparse(textstream)
|
||
|
||
pipe = parser.pipe(textstream)
|
||
|
||
for doc in pipe:
|
||
|
||
tokens = [tok for tok in doc]
|
||
|
||
# in parse
|
||
if token_filterlist is not None:
|
||
tokens = filterTokens(tokens, token_filterlist)
|
||
|
||
# post parse
|
||
#todo STELLSCHRAUBE tokens = [postparse(tok) for tok in tokens] #todo: informationsverlust von pos,tag etc.!
|
||
tokens = [tok.lower_ for tok in tokens]
|
||
yield " ".join(tokens)
|
||
|
||
def preparse(stringstream):
|
||
|
||
for string in stringstream:
|
||
|
||
# cut_after
|
||
words = ["gruss", "grusse","gruesse","gruessen","grusses"]
|
||
|
||
for gr in words:
|
||
if gr in string:
|
||
string = string.rpartition(gr)[0]
|
||
break
|
||
|
||
yield string
|
||
|
||
def postparse(toktext):
|
||
|
||
toktext = toktext.lower_
|
||
|
||
# remove_words_containing_topLVL
|
||
toktext = toktext if not re.search(REGEX_TOPLVL, toktext) else ""
|
||
|
||
# lemmatize
|
||
toktext = lemmatizeWord(toktext)
|
||
|
||
# synonyme normalisieren
|
||
toktext = getFirstSynonym(toktext)
|
||
|
||
# autocorrect
|
||
toktext = autocorrectWord(toktext)
|
||
|
||
return toktext
|
||
|
||
|
||
def processDictstream(dictstream, funcdict, parser):
|
||
|
||
for dic in dictstream:
|
||
result = {}
|
||
for key, value in dic.items():
|
||
|
||
if key in funcdict:
|
||
|
||
doc = parser(value)
|
||
tokens = [tok for tok in doc]
|
||
funclist = funcdict[key]
|
||
|
||
tokens = filterTokens(tokens, funclist)
|
||
|
||
result[key] = " ".join([tok.lower_ for tok in tokens])
|
||
|
||
|
||
else:
|
||
result[key] = value
|
||
yield result
|
||
|
||
"""
|
||
##################################################################################################
|
||
|
||
|
||
|
||
"""
|
||
def extract_from_corpus(corpus):
|
||
"""
|
||
"""
|
||
Extract from each doc from a corpus a string containing token_texts
|
||
|
||
|
||
:param corpus: textacy.Corpus
|
||
:return: string-gen
|
||
"""
|
||
"""
|
||
|
||
weighting = 'tf' #'tfidf'
|
||
ngrams = 1
|
||
min_df = 1
|
||
max_df = 0.9
|
||
|
||
|
||
###### vectorize corpi
|
||
|
||
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
||
|
||
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus)
|
||
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
||
id2term = vectorizer.id_to_term #__getattribute__("id_to_term")
|
||
|
||
|
||
|
||
|
||
# WHITELIST erstellen. Enthält zumindest die evtuellen Topics
|
||
|
||
WHITELIST = ["boss", "sap", "firefox"] #todo autogenerierung relv. techn. begriffe
|
||
|
||
kb_cats = ['eldorado', 'cws_confluence', 'wsus', 'mail groupware', 'd.3 dms', 'serviceportal', 'softwarelizenzen', 'sophos', 'webserver', 'sap', 'ftp server', 'dhcp', 'tonerboerse', 'mailalias', 'arbeitsplatzsupport', 'mediendienste', 'mailverteiler', 'uni mail', 'basis app', 'videoschnitt', 'DEFAULT', 'verwaltung', 'matrix42_hilfe', 'hoersaaluebertragung', 'redmine', 'uniflow', 'keine rueckantwort', 'pools', 'leitung', 'netze', 'konteneinsicht', 'kennwort aenderung', 'datanet', 'neuanschluss', 'semesterticket', 'asknet', 'veranstaltungen', 'housing', 'fk 16', 'fiona', 'betrieb', 'vorlagenerstellung', 'studierendensekretariat', 'pvp', 'mobilfunkvertraege', 'ausleihe', 'web', 'spam phishing', 'sap urlaub', 'evaexam', 'vorlesungsaufzeichnung', 'firewall betreuung', 'ub basis it', 'virtuelle desktops citrix', 'fk15', 'virtuelle server', 'lizenzserver', 'elektronisches telefonbuch', 'joomla itmc website', 'weiterentwicklung', 'serversupport', 'wlan', 'kurse', 'technik', 'raumkalender', 'backup tsm', 'haustechnik', 'voicemail box', 'facility', 'unicard ausgabe', 'mdm mobile device management', 'entwicklung', 'webgestaltung', 'unicard sperrung', 'forensic', 'basis applikationen', 'overhead projektor', 'plagiatserkennung', 'uniaccount zugangsdaten', 'zentrale webserver', 'webmailer', 'fk12 webauftritt', 'plotter', 'campus management', 'ub_stoerungen', 'rundmail', 'telefon', 'raumbuchung', 'fk12 migration', 'dienstreise', 'hardware', 'it sicherheit sic', 'hochleistungsrechnen', 'unicard', 'sos', 'benutzerverwaltung_probleme', 'confluence', 'vpn', 'zhb', 'campus app', 'itmc_aufgaben', 'sicherheit', 'schulungsraum verwaltung', 'unicard produktion', 'schulung', 'video', 'dokoll support', 'sd', 'servicedesk', 'v2 campus app feedback', 'lido', 'app feedback', 'ibz raumbuchung', 'hcm stammdaten', 'itmc_stoerungen', 'boss service desk', 'exchange nutzung', 'office', 'rektorat -buero', 'bestellung', 'moodle', 'fk raumplanung 09', 'aenderung', 'neuausstattung', 'benutzerverwaltung', 'rechnerraeume', 'designentwicklung', 'fk 12', 'werkstoffe lehrstuhl bauwesen', 'server storage', 'beantragung', 'visitenkartenproduktion', 'gastaufenthalt', 'telefonkonferenzen', 'raumbuchungssysteme', 'fk14_test', 'e mail dienste', 'grafik', 'ews', 'itmc schulungsraeume', 'tsm', 'softwareverteilung', 'beamer', 'lizenzmanagement', 'fileserver einrichtung', 'redmine projektverwaltung', 'service desk itmc', 'pruefungsmanagement', 'prozess- und projektmanagement', 'formulare antraege', 'namensaenderung', 'verkauf', 'software', 'itmc medienraeume ef50', 'zugangsdaten', 'medientechnik', 'lan', 'veeam', 'unicard redaktionsteam', 'changes', 'service portal', 'limesurvey', 'dns', 'dokoll pvp', 'uhren', 'nrw ticket', 'itmc_als', 'linux bs', 'werkvertraege', 'blogs wikis foren', 'test', 'abmeldung', 'desktop & basisdienste', 'telefonzentrale', 'siport zugangskontrolle', 'antrag auf rechnungserstellung', 'verschiedene aufgaben', 'kundenserver', 'medienraeume ef50', 'videokonferenzen', 'benutzungsverwaltung', 'mailverteiler exchange', 'lsf', 'telefonabrechnung', 'werkstaette', 'uniaccount', 'outlook_einrichtung', 'itmc webauftritt', 'zertifikate server dfn', 'allgemein', 'umzug', 'service portal redaktion', 'pos', 'beschaffung', 'boss', 'hacker angriff', 'software entwicklung', 'cd dvd produktion', 'sam spider', 'viren', 'kursplanung', 'itmc pools', 'kms', 'e learning']
|
||
kb_keys = ['zugriff_onlinedienste_rueckmeldung', 'uniaccount', 'freischaltung', 'asknet', 'eduroam', 'donnerstagsmail namensaenderung', 'asiexception', 'lsf', 'kundenantwort', 'chip', 'unitymedia', 'citavi', 'fehler', 'windows beziehen', 'wlan', 'ipv6', 'freischaltung verzoegert', 'betrag', '"defekte karte"', 'risse', 'laden', 'sap portal anderer modus', 'goeke', 'informationen des itmc zum einsatz', 'transport wurde durchgefuehrt.', 'wi-fi', 'unicard_auszahlung', 'ausleihe', 'unimail', 'uni-account', 'unicard','beantragung', 'nrw-ticket', 'printservice', 'dms', 'ip6', 'transport und beschreibung zum transportauftrag !', 'wlan passwort', 'dokumentenmanagementsystem', 'webmailer', 'vpn', 'repository', 'unicard', 'projekte', 'eingeschrieben', 'unicard abholung oeffnungszeiten', 'd3', 'beantragung', 'app tu-dortmund feedback', 'semester ticket', 'redmine', 'git', 'geldkarte', 'outlook_exchange', 'spam standardmeldung phishing', 'automatische aktualisierung der selbst angelegten kontakte in outlook', '"beschaedigte unicard"', 'elektronische telefonbuch', 'boss', 'wwrite', 'DEFAULT', 'anyconnect', 'wifi']
|
||
kb_subjs =['sd_office 365 plus support', 'citavi_lizenzschluessel_nicht bekommen', 'uni card', 'sd_office 356 plus bestellung', 'sd_gastaufenthalter', 'sd_outlook kontakte automatische aktualisierung', 'benutzer zum redmine hinzufuegen', 'sd_matlab lizenzdatei pc-pools', 'sd_tu-app feedback standard', 'vpn_ipsec_stoerung', 'vpn verbindung fuer unitymedia kunden', 'ub_prod_abholung_ abholfristen_benachrichtigungen', 'einrichtung des eduroam netzwerks', 'sd_webmailer_threadanzeige und weiterleitung', 'sd_wlan passwort setzen', 'ub_prod_namenskorrektur_student', 'sd_unimail imap_pop3', 'sd_outlook_in_exchange_einbinden', 'sd_keine rueckantwort kunde', 'sd_asknet_und_dreamspark', 'sd_heirat_namensaenderung_student', 'bd_unicard_nicht_eingeschrieben', 'wlan', 'sd_telefonbuch_prof_eintragung', 'change produktiv nehmen chn00146 - transport e01k909284', 'ungueltiges ticket siehe journal', 'apps_dms_d.3 client installation/login d.3 funktioniert nicht', 'd.3 client installation', 'unicard_restbetrag_auszahlung', 'cm_asiexception', 'sd_origin_workaround', 'sd_vpn_aktualisierung', 'problem mit der beantragung von der unicard', 'sd_unicard fehlerhafte geldbuchung', 'sd_login tu portals english', 'sd_gmx_web.de', 'studierendenausweis', 'sd_citavi', 'sd_fk9 test', 'sd_webmailer_thread-anzeige', 'bd_unicard_geldkarte_laden', 'ub_unicard_unicard mit vollmacht abholen', 'sd_stellenausschreibung schwarzes brett', 'freischaltung uniaccount', 'sd_asknet_mitarbeiter_softwarebestellung', 'how to setup eduroam', 'sd_citavi bestellung', 'unicard vergessen abzuholen und nicht mehr da', 'sd_unimail zu exchange', 'sd_diensthandy beschaffung', 'sd_sap konteneinsicht antrag', 'sd_unicard_defekt', 'sd_webmailer einrichtung weiterleitung', 'sd_kurs-angebote anmeldung', 'm42_dokumentationen_zu_neuen_ous', 'sd_sap_initialkennwort', 'sd_sap_freischaltung ohne passwortaenderung', 'sd_telefonbuch-eintrag_aenderung', 'sd_pruefungsamt', 'sd_phishing', 'apps_dms-passwort d.3', 'sd_goeke drucker', 'sd_sap_dienstreise', 'unicard nochmal beantragen', 'sd_outlook anmeldung gestoert', 'sd_citavi_support', 'DEFAULT', 'sd_geraeteausleihe', 'sd_account_abmelden', 'sd_uniaccount freischaltung verzoegert englisch', 'ub_beschaedigte unicard', 'sd_gleitzeitanlage_dez3_stoerung', 'transportdurchfuehung', 'sd_sap_initialkennwort_englisch', 'sd_antwort_phishingmail', 'sd_namensaenderung mitarbeiter', 're: elektroarbeiten fuer leitsystem 2. und 3. obergeschoss', 'lsf freischaltung als mitarbeiter/in', 'ub_unicard_spaetere abholung moeglich?', 'sd_antrag funktionale mailadresse', 'sd_apple-on-campus', 'sd_office365_asknet', 'sd_sophos download', 'sd_freischaltung uniaccount verzoegert', 'ub_unicard_zusendung der karte moeglich?', 'ohne betreff', 'sd_immatrikulationsbescheinigung_portal', 'sd_studisek_buchung_semesterbeitrag', 'sd_studisek_englisch', 'probleme mit der namensaenderung/ neue unicard', 'sd_telefonbuch, neues system', 'fehlender eintrag im elektronischen telefonbuch', 'sd_boss_notenverbuchung', 'sd_laufzeit unimail account', 'sd_semesterticket', 'sd_kontakt_asknet', 'windows 10', 'sd_login_tu_portale', 'ub_geldchip-problem bei uc', 'sd_zugriff_onlinedienste_rueckmeldung', 'sd_wlan-gastkonto', 'sd_tu_app_keine internetverbindung', 'sd_uniaccount_ehemalige_passwortaenderung', 'sd_verlust/antrag unicard', 'sd_sap_konteneinsicht_ workaround', 'apps_redmine_repository', 'sd_itmc kurse anmeldebestaetigung', 'sd_mail_als_anhang', 'bd_unicard_chip_defekt', 'probleme mit unicard', 'ub_unicard_abholungszeiten', 'sd_falsche_personendaten', 'sd_uniaccount_ehemalige_studierende', 'sd_vpn anleitungen', 'sd_kurs-angebote itmc', 'sd_studisek', 'sd_login tu portale', 'sd_immatrikulationsbescheigung_druckfehler', 'ub_drucker kopierer', 'sd_vpn_temporaerer fehler ub', 'sd_spss_online_bestellung', 'sd_dreamspark', 'sd_unicard_gesperrte unicard entsperre', 'sd_boss-bescheinigung', 'bd_goeke_allgemein', 'sd_uniaccount_passwortaenderung', 'sd_namensaenderung_englisch', 'sd_email_namensaenderung', 'bd_unicard_freigabe_beantragung', 'spam ohne tu bezug', 'sd_internationaloffice', 'sd_tu-app feedback_englisch', 'cm_lsf-boss_freischaltung', 'sd-e-mail_adresse_funktional_beantragen', 'sd_vpn_webvpn', 'sd_vpn_probleme_mit_unitymedia', 'sd_plotauftrag_zv', 'sd_beantragung_unicard', 'sd_antworten_korrekt', 'ub_prod_neue unicard bei beschaedigung', 'sd_telefonantrag_aenderung_neuantrag', 'sd_wlan passwort englisch', 'sd_aktivierung uniaccount', 'sd_spam e-mail bekannt meldung', 'sd_wlan_beratung', 'ub_namensaenderung', 'sd_telefon (antrag: neuanschluss, umzug, aenderung erledigt)', 'sd_unicard_abholung', 'sd_uniaccount_dauer freischaltung', 'sd_uniaccount activation englisch', 'sd_unicard_max_laufzeit', 'sd_unicard_workaround_bestellung', 'sd_sap_firefox_esr', 'sap portal "im anderen modus geoeffnet"', 'sd_origin nur noch eine seriennummer', 'sd_login_unibib ub-it']
|
||
|
||
WHITELIST = WHITELIST + kb_cats + kb_keys + kb_subjs
|
||
|
||
|
||
THESAURUS = load_obj(path2thesaurus_dict)
|
||
#WORDS = load_obj(path2wordsdict)
|
||
LEMMAS = load_obj(path2lemmadict)
|
||
DE_STOP_WORDS = load_obj(path2DEstopwordlist)
|
||
#EN_STOP_WORDS = load_obj(path2ENstopwordlist)
|
||
VORNAMEN = load_obj(path2firstnameslist)
|
||
|
||
ents_boss = []
|
||
ents_sap = []
|
||
|
||
for doc in corpus:
|
||
result = []
|
||
|
||
#if doc.metadata["TicketNumber"] == "INC40506":
|
||
# breakpoint()
|
||
|
||
|
||
for tok in doc:
|
||
|
||
|
||
"""
|
||
#if tok.lower_ =="boss":
|
||
# ents_boss.append(tok.ent_type_)
|
||
|
||
#if tok.lower_ =="sap":
|
||
# ents_sap.append(tok.ent_type_)
|
||
"""
|
||
|
||
# wenn in whitelist, direkt übernehmen
|
||
if tok.lower_ in WHITELIST:
|
||
result.append(tok.lower_)
|
||
|
||
|
||
# ignore header, urls , emails, stop, vornamen
|
||
lemmatized_word = lemmatizeWord(tok.text,lemma_dict=LEMMAS)
|
||
if lemmatized_word.lower() in ["sehr", "geehrt", "herr" ,"herrn", "herren", "dame" , "damen", "liebe","lieben", "hallo", "guten", "tag","ehre","hi"] \
|
||
or tok.like_url \
|
||
or tok.like_email \
|
||
or tok.is_stop \
|
||
or tok.is_punct \
|
||
or tok.lower_ in DE_STOP_WORDS \
|
||
or tok.lower_ in VORNAMEN:
|
||
continue
|
||
|
||
|
||
|
||
# cut after footer
|
||
if replaceRockDots(tok.lower_) in ["gruss", "grusse", "gruesse", "gruessen", "grusses"]: # fehler schneidet bei zB INC40506 das meiste weg
|
||
break
|
||
|
||
|
||
|
||
if tok.pos_ in ["NOUN","PROPN"] \
|
||
or tok.ent_type_ in ["NORP","FACILITY","ORG","PRODUCT","WORK_OF_ART","LOC"]:
|
||
#or tok.dep_ == "ROOT":
|
||
# or tok.lower_ in NOUNS \ #,"PERSON"] \
|
||
toktext = tok.lower_
|
||
|
||
|
||
toktext = lemmatized_word
|
||
|
||
use_thesaurus = False
|
||
if use_thesaurus:
|
||
# hauptsynonym bilden idee zwar das Huaptsyn bilden und zählen aber die originalen wörter in den llda algo geben
|
||
#fehler ergibt nonsens frage werden die gesamtzahl an termen signifikant reduziert?
|
||
first_synonym = getFirstSynonym(toktext, thesaurus=THESAURUS)
|
||
if first_synonym is not None or first_synonym != '':
|
||
toktext = first_synonym if len(first_synonym.split()) == 1 else toktext
|
||
|
||
|
||
|
||
result.append(toktext)
|
||
|
||
|
||
|
||
yield " ".join(result)
|
||
|
||
#return doc_term_matrix
|
||
|
||
|
||
|
||
"""
|
||
|
||
|
||
#print(list(set(ents_sap)))
|
||
# ['', 'ORG', 'PERSON', 'LOC']
|
||
|
||
#print(list(set(ents_boss)))
|
||
# ['', 'ORG', 'PERSON', 'LOC']
|
||
|
||
|
||
|
||
|
||
|
||
# LOAD FROM CONFIG
|
||
|
||
path2thesaurus_dict = ressources_path + config.get("thesaurus","pickle_file")
|
||
path2wordsdict = ressources_path + config.get("spellchecking", "pickle_file")
|
||
path2lemmadict = ressources_path + config.get("lemmatization","pickle_file")
|
||
path2firstnameslist = ressources_path + config.get("firstnames","pickle_file")
|
||
path2DEstopwordlist = ressources_path + config.get("de_stopwords", "pickle_file")
|
||
path2ENstopwordlist = ressources_path + config.get("en_stopwords", "pickle_file")
|
||
custom_words = get_list_from_config("preprocessing", "custom_words")
|
||
|
||
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
|
||
de_plainpath = FILEPATH + config.get("de_corpus", "path") + "pre_labled_lines.txt"
|
||
|
||
corpus_en_path = FILEPATH + config.get("en_corpus", "path")
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
def norma(token_or_span):
|
||
|
||
if isinstance(token_or_span, SpacyToken):
|
||
return normalize_token(token_or_span)
|
||
|
||
elif isinstance(token_or_span, SpacySpan):
|
||
result= ' '.join(normalize_token(subtok) for subtok in token_or_span)
|
||
return textacy.preprocess.normalize_whitespace(result)
|
||
|
||
else:
|
||
msg = 'Input must be a spacy Token or Span, not {}.'.format(type(token_or_span))
|
||
raise TypeError(msg)
|
||
|
||
|
||
def normalize_token(tok):
|
||
global CURRENT_TICKET, FOOTER_FLAG
|
||
|
||
|
||
|
||
# check if CURRENT_TICKET is assigned
|
||
try:
|
||
CURRENT_TICKET
|
||
FOOTER_FLAG
|
||
except NameError:
|
||
CURRENT_TICKET = tok.doc
|
||
FOOTER_FLAG = False
|
||
|
||
|
||
|
||
#aktuell verarbeitendes Doc merken. wenn neues Ticket, dann Footer_flag auf False setzen
|
||
if tok.doc != CURRENT_TICKET:
|
||
FOOTER_FLAG = False
|
||
CURRENT_TICKET = tok.doc
|
||
|
||
# wenn in whitelist, direkt übernehmen
|
||
if tok.lower_ in WHITELIST:
|
||
return tok.lower_
|
||
|
||
|
||
# ignore header, urls , emails, stop, vornamen, blacklisted
|
||
lemmatized_word = lemmatizeWord(tok.text,lemma_dict=LEMMAS)
|
||
if lemmatized_word.lower() in ["sehr", "geehrt", "herr" ,"herrn", "herren", "dame" , "damen", "liebe","lieben", "hallo", "guten", "tag","ehre","hi"] \
|
||
or tok.like_url \
|
||
or tok.like_email \
|
||
or tok.is_stop \
|
||
or tok.is_punct \
|
||
or tok.lower_ in DE_STOP_WORDS \
|
||
or tok.lower_ in VORNAMEN\
|
||
or tok.lower_ in BLACKLIST:
|
||
return "" #todo bla das alles hier kommt zwischen to_terms_list und fitransform
|
||
|
||
|
||
|
||
# cut after footer
|
||
|
||
if replaceRockDots(tok.lower_) in ["gruss", "grusse", "gruesse", "gruessen", "grusses"]: # fehler schneidet bei zB INC40506 das meiste weg
|
||
FOOTER_FLAG = True
|
||
|
||
|
||
|
||
if ( tok.pos_ in ["NOUN","PROPN"] or tok.ent_type_ in ["NORP","FACILITY","ORG","PRODUCT","WORK_OF_ART","LOC"] ) and not FOOTER_FLAG:
|
||
|
||
#or tok.dep_ == "ROOT":
|
||
# or tok.lower_ in NOUNS \ #,"PERSON"] \
|
||
toktext = tok.lower_
|
||
|
||
|
||
toktext = lemmatized_word
|
||
|
||
use_thesaurus = False
|
||
if use_thesaurus:
|
||
# hauptsynonym bilden idee zwar das Huaptsyn bilden und zählen aber die originalen wörter in den llda algo geben
|
||
#fehler ergibt nonsens frage werden die gesamtzahl an termen signifikant reduziert?
|
||
first_synonym = getFirstSynonym(toktext, thesaurus=THESAURUS)
|
||
if first_synonym is not None or first_synonym != '':
|
||
toktext = first_synonym if len(first_synonym.split()) == 1 else toktext
|
||
|
||
|
||
|
||
return toktext
|
||
else:
|
||
return ""
|
||
|
||
|
||
|
||
|
||
def preprocessCorpus(cleaned_corpus):
|
||
logprint("Preprocess {0}_corpus at {1}".format(cleaned_corpus.lang, datetime.now()))
|
||
global THESAURUS, WORDS, LEMMAS, NOUNS, VORNAMEN, DE_STOP_WORDS, EN_STOP_WORDS, WHITELIST, BLACKLIST
|
||
|
||
|
||
|
||
|
||
|
||
|
||
weighting = 'tf' #'tfidf'
|
||
ngrams = (1,2)
|
||
min_df = 1
|
||
max_df = 0.3
|
||
min_label_freq = 1
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
WHITELIST = ["boss", "sap", "firefox"] # todo autogenerierung von whitelist
|
||
kb_cats = ['eldorado', 'cws_confluence', 'wsus', 'mail groupware', 'd.3 dms', 'serviceportal', 'softwarelizenzen',
|
||
'sophos', 'webserver', 'sap', 'ftp server', 'dhcp', 'tonerboerse', 'mailalias', 'arbeitsplatzsupport',
|
||
'mediendienste', 'mailverteiler', 'uni mail', 'basis app', 'videoschnitt', 'DEFAULT', 'verwaltung',
|
||
'matrix42_hilfe', 'hoersaaluebertragung', 'redmine', 'uniflow', 'keine rueckantwort', 'pools', 'leitung',
|
||
'netze', 'konteneinsicht', 'kennwort aenderung', 'datanet', 'neuanschluss', 'semesterticket', 'asknet',
|
||
'veranstaltungen', 'housing', 'fk 16', 'fiona', 'betrieb', 'vorlagenerstellung',
|
||
'studierendensekretariat', 'pvp', 'mobilfunkvertraege', 'ausleihe', 'web', 'spam phishing', 'sap urlaub',
|
||
'evaexam', 'vorlesungsaufzeichnung', 'firewall betreuung', 'ub basis it', 'virtuelle desktops citrix',
|
||
'fk15', 'virtuelle server', 'lizenzserver', 'elektronisches telefonbuch', 'joomla itmc website',
|
||
'weiterentwicklung', 'serversupport', 'wlan', 'kurse', 'technik', 'raumkalender', 'backup tsm',
|
||
'haustechnik', 'voicemail box', 'facility', 'unicard ausgabe', 'mdm mobile device management',
|
||
'entwicklung', 'webgestaltung', 'unicard sperrung', 'forensic', 'basis applikationen',
|
||
'overhead projektor', 'plagiatserkennung', 'uniaccount zugangsdaten', 'zentrale webserver', 'webmailer',
|
||
'fk12 webauftritt', 'plotter', 'campus management', 'ub_stoerungen', 'rundmail', 'telefon',
|
||
'raumbuchung', 'fk12 migration', 'dienstreise', 'hardware', 'it sicherheit sic', 'hochleistungsrechnen',
|
||
'unicard', 'sos', 'benutzerverwaltung_probleme', 'confluence', 'vpn', 'zhb', 'campus app',
|
||
'itmc_aufgaben', 'sicherheit', 'schulungsraum verwaltung', 'unicard produktion', 'schulung', 'video',
|
||
'dokoll support', 'sd', 'servicedesk', 'v2 campus app feedback', 'lido', 'app feedback',
|
||
'ibz raumbuchung', 'hcm stammdaten', 'itmc_stoerungen', 'boss service desk', 'exchange nutzung',
|
||
'office', 'rektorat -buero', 'bestellung', 'moodle', 'fk raumplanung 09', 'aenderung', 'neuausstattung',
|
||
'benutzerverwaltung', 'rechnerraeume', 'designentwicklung', 'fk 12', 'werkstoffe lehrstuhl bauwesen',
|
||
'server storage', 'beantragung', 'visitenkartenproduktion', 'gastaufenthalt', 'telefonkonferenzen',
|
||
'raumbuchungssysteme', 'fk14_test', 'e mail dienste', 'grafik', 'ews', 'itmc schulungsraeume', 'tsm',
|
||
'softwareverteilung', 'beamer', 'lizenzmanagement', 'fileserver einrichtung',
|
||
'redmine projektverwaltung', 'service desk itmc', 'pruefungsmanagement',
|
||
'prozess- und projektmanagement', 'formulare antraege', 'namensaenderung', 'verkauf', 'software',
|
||
'itmc medienraeume ef50', 'zugangsdaten', 'medientechnik', 'lan', 'veeam', 'unicard redaktionsteam',
|
||
'changes', 'service portal', 'limesurvey', 'dns', 'dokoll pvp', 'uhren', 'nrw ticket', 'itmc_als',
|
||
'linux bs', 'werkvertraege', 'blogs wikis foren', 'test', 'abmeldung', 'desktop & basisdienste',
|
||
'telefonzentrale', 'siport zugangskontrolle', 'antrag auf rechnungserstellung', 'verschiedene aufgaben',
|
||
'kundenserver', 'medienraeume ef50', 'videokonferenzen', 'benutzungsverwaltung',
|
||
'mailverteiler exchange', 'lsf', 'telefonabrechnung', 'werkstaette', 'uniaccount', 'outlook_einrichtung',
|
||
'itmc webauftritt', 'zertifikate server dfn', 'allgemein', 'umzug', 'service portal redaktion', 'pos',
|
||
'beschaffung', 'boss', 'hacker angriff', 'software entwicklung', 'cd dvd produktion', 'sam spider',
|
||
'viren', 'kursplanung', 'itmc pools', 'kms', 'e learning']
|
||
kb_keys = ['zugriff_onlinedienste_rueckmeldung', 'uniaccount', 'freischaltung', 'asknet', 'eduroam',
|
||
'donnerstagsmail namensaenderung', 'asiexception', 'lsf', 'kundenantwort', 'chip', 'unitymedia',
|
||
'citavi', 'fehler', 'windows beziehen', 'wlan', 'ipv6', 'freischaltung verzoegert', 'betrag',
|
||
'"defekte karte"', 'risse', 'laden', 'sap portal anderer modus', 'goeke',
|
||
'informationen des itmc zum einsatz', 'transport wurde durchgefuehrt.', 'wi-fi', 'unicard_auszahlung',
|
||
'ausleihe', 'unimail', 'uni-account', 'unicard', 'beantragung', 'nrw-ticket', 'printservice', 'dms',
|
||
'ip6', 'transport und beschreibung zum transportauftrag !', 'wlan passwort',
|
||
'dokumentenmanagementsystem', 'webmailer', 'vpn', 'repository', 'unicard', 'projekte', 'eingeschrieben',
|
||
'unicard abholung oeffnungszeiten', 'd3', 'beantragung', 'app tu-dortmund feedback', 'semester ticket',
|
||
'redmine', 'git', 'geldkarte', 'outlook_exchange', 'spam standardmeldung phishing',
|
||
'automatische aktualisierung der selbst angelegten kontakte in outlook', '"beschaedigte unicard"',
|
||
'elektronische telefonbuch', 'boss', 'wwrite', 'DEFAULT', 'anyconnect', 'wifi']
|
||
kb_subjs = ['sd_office 365 plus support', 'citavi_lizenzschluessel_nicht bekommen', 'uni card',
|
||
'sd_office 356 plus bestellung', 'sd_gastaufenthalter',
|
||
'sd_outlook kontakte automatische aktualisierung', 'benutzer zum redmine hinzufuegen',
|
||
'sd_matlab lizenzdatei pc-pools', 'sd_tu-app feedback standard', 'vpn_ipsec_stoerung',
|
||
'vpn verbindung fuer unitymedia kunden', 'ub_prod_abholung_ abholfristen_benachrichtigungen',
|
||
'einrichtung des eduroam netzwerks', 'sd_webmailer_threadanzeige und weiterleitung',
|
||
'sd_wlan passwort setzen', 'ub_prod_namenskorrektur_student', 'sd_unimail imap_pop3',
|
||
'sd_outlook_in_exchange_einbinden', 'sd_keine rueckantwort kunde', 'sd_asknet_und_dreamspark',
|
||
'sd_heirat_namensaenderung_student', 'bd_unicard_nicht_eingeschrieben', 'wlan',
|
||
'sd_telefonbuch_prof_eintragung', 'change produktiv nehmen chn00146 - transport e01k909284',
|
||
'ungueltiges ticket siehe journal', 'apps_dms_d.3 client installation/login d.3 funktioniert nicht',
|
||
'd.3 client installation', 'unicard_restbetrag_auszahlung', 'cm_asiexception', 'sd_origin_workaround',
|
||
'sd_vpn_aktualisierung', 'problem mit der beantragung von der unicard',
|
||
'sd_unicard fehlerhafte geldbuchung', 'sd_login tu portals english', 'sd_gmx_web.de',
|
||
'studierendenausweis', 'sd_citavi', 'sd_fk9 test', 'sd_webmailer_thread-anzeige',
|
||
'bd_unicard_geldkarte_laden', 'ub_unicard_unicard mit vollmacht abholen',
|
||
'sd_stellenausschreibung schwarzes brett', 'freischaltung uniaccount',
|
||
'sd_asknet_mitarbeiter_softwarebestellung', 'how to setup eduroam', 'sd_citavi bestellung',
|
||
'unicard vergessen abzuholen und nicht mehr da', 'sd_unimail zu exchange', 'sd_diensthandy beschaffung',
|
||
'sd_sap konteneinsicht antrag', 'sd_unicard_defekt', 'sd_webmailer einrichtung weiterleitung',
|
||
'sd_kurs-angebote anmeldung', 'm42_dokumentationen_zu_neuen_ous', 'sd_sap_initialkennwort',
|
||
'sd_sap_freischaltung ohne passwortaenderung', 'sd_telefonbuch-eintrag_aenderung', 'sd_pruefungsamt',
|
||
'sd_phishing', 'apps_dms-passwort d.3', 'sd_goeke drucker', 'sd_sap_dienstreise',
|
||
'unicard nochmal beantragen', 'sd_outlook anmeldung gestoert', 'sd_citavi_support', 'DEFAULT',
|
||
'sd_geraeteausleihe', 'sd_account_abmelden', 'sd_uniaccount freischaltung verzoegert englisch',
|
||
'ub_beschaedigte unicard', 'sd_gleitzeitanlage_dez3_stoerung', 'transportdurchfuehung',
|
||
'sd_sap_initialkennwort_englisch', 'sd_antwort_phishingmail', 'sd_namensaenderung mitarbeiter',
|
||
're: elektroarbeiten fuer leitsystem 2. und 3. obergeschoss', 'lsf freischaltung als mitarbeiter/in',
|
||
'ub_unicard_spaetere abholung moeglich?', 'sd_antrag funktionale mailadresse', 'sd_apple-on-campus',
|
||
'sd_office365_asknet', 'sd_sophos download', 'sd_freischaltung uniaccount verzoegert',
|
||
'ub_unicard_zusendung der karte moeglich?', 'ohne betreff', 'sd_immatrikulationsbescheinigung_portal',
|
||
'sd_studisek_buchung_semesterbeitrag', 'sd_studisek_englisch',
|
||
'probleme mit der namensaenderung/ neue unicard', 'sd_telefonbuch, neues system',
|
||
'fehlender eintrag im elektronischen telefonbuch', 'sd_boss_notenverbuchung',
|
||
'sd_laufzeit unimail account', 'sd_semesterticket', 'sd_kontakt_asknet', 'windows 10',
|
||
'sd_login_tu_portale', 'ub_geldchip-problem bei uc', 'sd_zugriff_onlinedienste_rueckmeldung',
|
||
'sd_wlan-gastkonto', 'sd_tu_app_keine internetverbindung', 'sd_uniaccount_ehemalige_passwortaenderung',
|
||
'sd_verlust/antrag unicard', 'sd_sap_konteneinsicht_ workaround', 'apps_redmine_repository',
|
||
'sd_itmc kurse anmeldebestaetigung', 'sd_mail_als_anhang', 'bd_unicard_chip_defekt',
|
||
'probleme mit unicard', 'ub_unicard_abholungszeiten', 'sd_falsche_personendaten',
|
||
'sd_uniaccount_ehemalige_studierende', 'sd_vpn anleitungen', 'sd_kurs-angebote itmc', 'sd_studisek',
|
||
'sd_login tu portale', 'sd_immatrikulationsbescheigung_druckfehler', 'ub_drucker kopierer',
|
||
'sd_vpn_temporaerer fehler ub', 'sd_spss_online_bestellung', 'sd_dreamspark',
|
||
'sd_unicard_gesperrte unicard entsperre', 'sd_boss-bescheinigung', 'bd_goeke_allgemein',
|
||
'sd_uniaccount_passwortaenderung', 'sd_namensaenderung_englisch', 'sd_email_namensaenderung',
|
||
'bd_unicard_freigabe_beantragung', 'spam ohne tu bezug', 'sd_internationaloffice',
|
||
'sd_tu-app feedback_englisch', 'cm_lsf-boss_freischaltung', 'sd-e-mail_adresse_funktional_beantragen',
|
||
'sd_vpn_webvpn', 'sd_vpn_probleme_mit_unitymedia', 'sd_plotauftrag_zv', 'sd_beantragung_unicard',
|
||
'sd_antworten_korrekt', 'ub_prod_neue unicard bei beschaedigung',
|
||
'sd_telefonantrag_aenderung_neuantrag', 'sd_wlan passwort englisch', 'sd_aktivierung uniaccount',
|
||
'sd_spam e-mail bekannt meldung', 'sd_wlan_beratung', 'ub_namensaenderung',
|
||
'sd_telefon (antrag: neuanschluss, umzug, aenderung erledigt)', 'sd_unicard_abholung',
|
||
'sd_uniaccount_dauer freischaltung', 'sd_uniaccount activation englisch', 'sd_unicard_max_laufzeit',
|
||
'sd_unicard_workaround_bestellung', 'sd_sap_firefox_esr', 'sap portal "im anderen modus geoeffnet"',
|
||
'sd_origin nur noch eine seriennummer', 'sd_login_unibib ub-it']
|
||
|
||
BLACKLIST = get_list_from_config("preprocessing", "custom_words")
|
||
WHITELIST = WHITELIST + kb_cats + kb_keys + kb_subjs
|
||
DE_STOP_WORDS = load_obj(path2DEstopwordlist)
|
||
VORNAMEN = load_obj(path2firstnameslist)
|
||
|
||
LEMMAS = load_obj(path2lemmadict)
|
||
THESAURUS = load_obj(path2thesaurus_dict)
|
||
|
||
|
||
|
||
|
||
###### vectorize corpus
|
||
logprint("vectorize corpus")
|
||
|
||
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df) #fehler norma() kickt tokens raus, also bezieht sich min/max_df nicht mehr auf cleaned
|
||
|
||
terms_list_gen = (doc.to_terms_list(ngrams=ngrams, as_strings=True, normalize=norma) for doc in cleaned_corpus)
|
||
|
||
doc_term_matrix = vectorizer.fit_transform(terms_list_gen)
|
||
id2term = vectorizer.id_to_term
|
||
term2id = vectorizer.vocabulary
|
||
|
||
logprint("corpus vectorized")
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# write labeled_lines.txt
|
||
line_gen = gen_lines(doc_term_matrix,term2id,cleaned_corpus)
|
||
lines_txt = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpi/labled_lines.txt"
|
||
textacy.fileio.write_file_lines(line_gen,
|
||
filepath=lines_txt)
|
||
logprint("labled_lines.txt written")
|
||
|
||
|
||
|
||
|
||
|
||
|
||
#### ticket2label_cat
|
||
|
||
# get all categrories
|
||
"""
|
||
labelist_cat = []
|
||
for doc in cleaned_corpus:
|
||
category = normalize_str(doc.metadata["categoryName"])
|
||
labelist_cat.append(category)
|
||
"""
|
||
labelist_cat = [ normalize_str(doc.metadata["categoryName"]) for doc in cleaned_corpus]
|
||
|
||
|
||
#create label_dict
|
||
labeldict_cat = create_labeldict(labelist_cat, min_label_freq = 1, add_default_label=True)
|
||
|
||
# map tickets to labels
|
||
"""
|
||
ticket2label_cat = {}
|
||
for doc in cleaned_corpus:
|
||
ticketID = doc.metadata["TicketNumber"]
|
||
category_name_ = doc.metadata["categoryName"]
|
||
label_num = labeldict_cat.get(category_name_,labeldict_cat['DEFAULT'])
|
||
|
||
ticket2label_cat.update({ticketID : label_num})
|
||
"""
|
||
ticket2label_cat = { doc.metadata["TicketNumber"] : labeldict_cat.get(doc.metadata["categoryName"],labeldict_cat['DEFAULT']) for doc in cleaned_corpus }
|
||
|
||
##################################################################################################
|
||
|
||
kb2keywords_dict, kb2subjects_dict, ticket2kbs_dict, ticket2keywords_dict, ticket2subjects_dict = create_ticket2sth_dicts()
|
||
|
||
|
||
#### ticket2label_keys
|
||
ticket2label_keys = create_ticket2label_dict(ticket2keywords_dict,cleaned_corpus)
|
||
|
||
"""
|
||
labelist_keys = ticket2keywords_dict.values()
|
||
labelist_keys = flatten(labelist_keys)
|
||
|
||
|
||
labeldict_keys = create_labeldict(labelist_keys, min_label_freq = 1, add_default_label=True)
|
||
|
||
ticket2label_keys = {}
|
||
for doc in cleaned_corpus:
|
||
ticketID = doc.metadata["TicketNumber"]
|
||
|
||
|
||
keywords = ticket2keywords_dict.get(ticketID, ['DEFAULT'])
|
||
|
||
|
||
label = ""
|
||
for kw in keywords:
|
||
label = label + str(labeldict_keys.get(normalize_str(str(kw)), labeldict_keys['DEFAULT'])) + " "
|
||
|
||
|
||
ticket2label_keys.update({ticketID : label})
|
||
|
||
"""
|
||
##################################################################################################
|
||
|
||
|
||
|
||
#### ticket2label_subjs
|
||
ticket2label_subjs = create_ticket2label_dict(ticket2subjects_dict,cleaned_corpus)
|
||
|
||
"""
|
||
labelist_subjs = ticket2subjects_dict.values()
|
||
labelist_subjs = flatten(labelist_subjs)
|
||
|
||
|
||
labeldict_subjs = create_labeldict(labelist_subjs, min_label_freq = 1, add_default_label=True)
|
||
|
||
ticket2label_subjs = {}
|
||
for doc in cleaned_corpus:
|
||
ticketID = doc.metadata["TicketNumber"]
|
||
|
||
|
||
keywords = ticket2subjects_dict.get(ticketID, ['DEFAULT'])
|
||
|
||
|
||
label = ""
|
||
for kw in keywords:
|
||
label = label + str(labeldict_subjs.get(normalize_str(str(kw)), labeldict_subjs['DEFAULT'])) + " "
|
||
|
||
ticket2label_subjs.update({ticketID : label})
|
||
"""
|
||
|
||
|
||
#### ticket2label_kb
|
||
ticket2label_kb = create_ticket2label_dict(ticket2kbs_dict,cleaned_corpus)
|
||
|
||
"""
|
||
labelist_kbs = ticket2kbs_dict.values()
|
||
labelist_kbs = flatten(labelist_kbs)
|
||
|
||
labeldict_kbs = create_labeldict(labelist_kbs, min_label_freq = 1, add_default_label=True)
|
||
|
||
ticket2label_kb = {}
|
||
for doc in cleaned_corpus:
|
||
ticketID = doc.metadata["TicketNumber"]
|
||
|
||
|
||
keywords = ticket2kbs_dict.get(ticketID, ['DEFAULT'])
|
||
|
||
|
||
label = ""
|
||
for kw in keywords:
|
||
label = label + str(labeldict_kbs.get(normalize_str(str(kw)), labeldict_kbs['DEFAULT'])) + " "
|
||
|
||
ticket2label_kb.update({ticketID : label})
|
||
"""
|
||
|
||
def relabele_lines(file,ticket2label_dict):
|
||
|
||
line_gen = textacy.fileio.read_file_lines(file)
|
||
|
||
for line in line_gen:
|
||
label = re.findall(r'\[(.*?)\]', line)
|
||
|
||
new_label = "[ "
|
||
for lbl in label:
|
||
new_label = new_label + str(ticket2label_dict.get(str(lbl), "")).strip() + " "
|
||
|
||
new_label = new_label + "] "
|
||
result = new_label + str(line.rpartition("]")[2])
|
||
|
||
# new_label = str([ticket2label_dict.get(str(lbl),"") for lbl in label])
|
||
|
||
# result = "[ " + new_label + " ] " + line.rpartition("]")[2]
|
||
# print(result)
|
||
|
||
yield result
|
||
|
||
lines_sub = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpi/labled_lines_sub.txt"
|
||
generator = relabele_lines(lines_txt, ticket2subjects_dict)
|
||
textacy.fileio.write_file_lines(generator, lines_sub)
|
||
|
||
|
||
labelset, corpus, labels = load_corp(lines_sub)
|
||
|
||
K = 20 #Number of topics, ist egal, wird in implementierung nicht verwertet
|
||
alpha = 0.001
|
||
beta = 0.001
|
||
number_of_iterations = 10
|
||
|
||
|
||
llda = LLDA(K, alpha, beta)
|
||
llda.set_corpus(labelset, corpus, labels)
|
||
|
||
for i in range(number_of_iterations):
|
||
llda.inference()
|
||
|
||
phi = llda.phi()
|
||
# print(llda.vocas)
|
||
|
||
# for v, voca in enumerate(llda.vocas):
|
||
# print ','.join([voca]+[str(x) for x in llda.n_z_t[:,v]])
|
||
# print(','.join([voca] + [str(x) for x in phi[:, v]]))
|
||
|
||
|
||
|
||
|
||
################# termite plot ######################################
|
||
topic_labels = list(labelset)
|
||
term_labels = list(llda.vocas)
|
||
|
||
term_topic_weights = phi.transpose()
|
||
|
||
threshmin = 0.05
|
||
|
||
|
||
thresholded = threshold(term_topic_weights, threshmin=threshmin)
|
||
|
||
draw.draw_termite(thresholded, topic_labels, term_labels, save="test.png")
|
||
#jgibbsLLDAv2("corpi/labled_lines.txt",ticket2kbs_dict,cleaned_corpus,"results")
|
||
|
||
|
||
|
||
|
||
return doc_term_matrix, id2term
|
||
|
||
|
||
|
||
def create_ticket2label_dict(ticket2chunk_dict,corpus):
|
||
"""
|
||
Creates a dictionary to map a TicketNumber to a label
|
||
:param ticket2chunk_dict: e.g. { TicketNumber : KB_entries }
|
||
:return: {TicketNumber : label }
|
||
"""
|
||
|
||
labelist = ticket2chunk_dict.values()
|
||
labelist = flatten(labelist)
|
||
|
||
labeldict = create_labeldict(labelist, min_label_freq=1, add_default_label=True)
|
||
|
||
ticket2label = {}
|
||
for doc in corpus:
|
||
ticketID = doc.metadata["TicketNumber"]
|
||
|
||
keywords = ticket2chunk_dict.get(ticketID, ['DEFAULT'])
|
||
|
||
label = ""
|
||
for kw in keywords:
|
||
label = label + str(labeldict.get(normalize_str(str(kw)), labeldict['DEFAULT'])) + " "
|
||
|
||
ticket2label.update({ticketID: label})
|
||
|
||
return ticket2label
|
||
|
||
|
||
|
||
def create_labeldict(labelist, min_label_freq=1, add_default_label=True):
|
||
|
||
# nur die x häufigsten labels benutzen
|
||
labelist = [l for l in labelist if labelist.count(l) >= min_label_freq]
|
||
|
||
in_labelist_ = {k: labelist.count(k) for k in labelist} # { label1 : 3 , label2 : 5, label3 : 1 }
|
||
labelist = sort_dictionary(in_labelist_) # [ (label3, 1), (label1, 3), (label2, 5) ]
|
||
labelist.reverse() # [ (label2, 5), (label1, 3), (label3, 1) ]
|
||
labeldict = {elem[0]: i for i, elem in enumerate(labelist)} # { label2 : 0, label1 : 1 , label3 : 2 }
|
||
if add_default_label:
|
||
if 'DEFAULT' not in labeldict.keys():
|
||
labeldict.update({'DEFAULT': len(labelist)}) # { label2 : 0, label1 : 1 , label3 : 2 , DEFAULT : 3 }
|
||
return labeldict
|
||
|
||
|
||
|
||
def create_ticket2sth_dicts():
|
||
"""
|
||
Return: {str : [str] }
|
||
|
||
kb2keywords_dict {'KBA10230': ['DEFAULT'], 'KBA10129': ['DEFAULT'], 'KBA10287': ['sd_ansys_informationen'], } len = 260
|
||
kb2subjects_dict {'KBA10230': ['unicard nochmal beantragen'], 'KBA10129': ['sd_entsperrung unicard nach verlust/wiederfinden'], } len = 260
|
||
ticket2kbs_dict {'INC44526': ['KBA10056'], 'INC67205': ['KBA10056'], } len = 4832
|
||
ticket2keywords_dict {'INC44526': ['DEFAULT'], 'INC67205': ['DEFAULT'], 'INC71863': ['DEFAULT'], 'INC44392': ['asknet'] } len=4832
|
||
ticket2subjects_dict {'INC44526': ['sd_telefon (antrag: neuanschluss, umzug, aenderung erledigt)'], len=4832
|
||
|
||
"""
|
||
|
||
# kb2keywords_dict / kb2subjects_dict --> {str : [str]}
|
||
|
||
kb2keywords_dict = {}
|
||
kb2subjects_dict = {}
|
||
|
||
kb_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
|
||
next(kb_gen, None) # skip first line "ArticleID";"Subject";"Keywords";...
|
||
|
||
for line in kb_gen:
|
||
|
||
kb_id = line[0]
|
||
|
||
subject = normalize_str(line[1])
|
||
|
||
keywords = [normalize_str(x) for x in str(line[2]).split(",")]
|
||
|
||
if kb_id not in kb2keywords_dict.keys():
|
||
kb2keywords_dict[kb_id] = keywords if keywords != [''] else ["DEFAULT"]
|
||
else:
|
||
kb2keywords_dict[kb_id] = kb2keywords_dict[kb_id] + keywords
|
||
|
||
if kb_id not in kb2subjects_dict.keys():
|
||
kb2subjects_dict[kb_id] = [normalize_str(subject) if subject != [''] else "DEFAULT"]
|
||
else:
|
||
kb2subjects_dict[kb_id].append(normalize_str(subject))
|
||
|
||
# ticket2kbs_dict --> {str : [str]}
|
||
ticket2kbs_dict = {}
|
||
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
|
||
next(kb2ticket_gen, None) # skip first line"TicketNumber";"ArticleID"
|
||
|
||
for line in kb2ticket_gen:
|
||
ticket_id = line[0]
|
||
kb_id = line[1]
|
||
|
||
if ticket_id not in ticket2kbs_dict.keys():
|
||
ticket2kbs_dict[ticket_id] = [kb_id]
|
||
else:
|
||
ticket2kbs_dict[ticket_id].append(kb_id)
|
||
|
||
# ticket2keywords --> {str:[str]}
|
||
ticket2keywords_dict = {}
|
||
|
||
for ticket_id, kb_ids in ticket2kbs_dict.items():
|
||
|
||
if ticket_id not in ticket2keywords_dict.keys():
|
||
ticket2keywords_dict[ticket_id] = []
|
||
|
||
for kb_id in kb_ids:
|
||
ticket2keywords_dict[ticket_id].append(kb2keywords_dict[kb_id])
|
||
|
||
ticket2keywords_dict[ticket_id] = flatten(ticket2keywords_dict[ticket_id])
|
||
|
||
# ticket2subjects --> {str:[str]}
|
||
ticket2subjects_dict = {}
|
||
|
||
for ticket_id, kb_ids in ticket2kbs_dict.items():
|
||
|
||
if ticket_id not in ticket2subjects_dict.keys():
|
||
ticket2subjects_dict[ticket_id] = []
|
||
|
||
for kb_id in kb_ids:
|
||
ticket2subjects_dict[ticket_id].append(kb2subjects_dict[kb_id])
|
||
|
||
ticket2subjects_dict[ticket_id] = flatten(ticket2subjects_dict[ticket_id])
|
||
|
||
|
||
"""
|
||
count_dict = {}
|
||
for v in ticket2kbs_dict.values():
|
||
for kb in v:
|
||
if kb in count_dict.keys():
|
||
count_dict[kb] +=1
|
||
else:
|
||
count_dict[kb] = 1
|
||
|
||
sorted_dict = sorted(count_dict.items(), key=operator.itemgetter(1))
|
||
|
||
for k,v in sorted_dict:
|
||
subs = kb2subjects_dict[k]
|
||
keys = kb2keywords_dict[k]
|
||
print(subs, keys , v) # frage wieviele tickets pro topic?
|
||
|
||
print("kb_entrys used: {}".format(len(sorted_dict))) # frage wie viele kb_entry's insg genutzt?: 155
|
||
"""
|
||
|
||
|
||
|
||
return kb2keywords_dict, kb2subjects_dict, ticket2kbs_dict, ticket2keywords_dict, ticket2subjects_dict
|
||
#labelist = ticket2keywords_dict.values()
|
||
|
||
#labelist = flatten(labelist)
|
||
#labelist = list(set(labelist))
|
||
#labeldict = {k: v for v, k in enumerate(labelist)}
|
||
|
||
##############################################################################################
|
||
|
||
|
||
|
||
def gen_lines(doc_term_matrix,term2id,corpus,label="TicketNumber"):
|
||
|
||
for i,doc in enumerate(corpus):
|
||
line = "[" + doc.metadata[label] + "]"
|
||
|
||
for term, id_ in term2id.items():
|
||
if doc_term_matrix[i, id_] != 0:
|
||
term = term if len(term.split()) == 1 else "_".join(term.split())
|
||
|
||
line = line + " " + term
|
||
if len(line) != 0:
|
||
yield line
|
||
else:
|
||
continue
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
def main(cleaned_corpus):
|
||
start = time.time()
|
||
|
||
|
||
|
||
|
||
|
||
"""
|
||
filter_tokens = [
|
||
|
||
keepNouns(NOUNS),
|
||
|
||
removeWords(DE_STOP_WORDS + custom_words + VORNAMEN),
|
||
|
||
removePOS(["PUNCT", "SPACE", "NUM"]),
|
||
|
||
#todo STELLSCHRAUBE remove_words_containing_Numbers(),
|
||
#todo STELLSCHRAUBE remove_long_words(),
|
||
#todo STELLSCHRAUBE remove_short_words()
|
||
|
||
]
|
||
|
||
clean_in_meta = {
|
||
"Solution": [removePOS(["SPACE"])],
|
||
"Subject": [removePOS(["SPACE", "PUNCT"])],
|
||
"categoryName": [removePOS(["SPACE", "PUNCT"])]
|
||
}
|
||
"""
|
||
|
||
|
||
|
||
|
||
|
||
doc_term_matrix, id2term_dict = preprocessCorpus(cleaned_corpus)
|
||
|
||
|
||
|
||
|
||
end = time.time()
|
||
logprint("Time Elapsed Preprocessing:{0} min".format((end - start) / 60))
|
||
return doc_term_matrix, id2term_dict
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
logprint("Load Corpus...")
|
||
|
||
corpus_name = "de_clean_small" # _small
|
||
cleaned_corpus, parser = load_corpus(corpus_path="/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpi/", corpus_name=corpus_name)
|
||
|
||
logprint("... Done")
|
||
|
||
main(cleaned_corpus)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
"""
|
||
pipe=[
|
||
|
||
##String
|
||
|
||
fixUnicode(),
|
||
replaceHardS(),
|
||
resolveAbbrivations(),
|
||
|
||
remove_words_containing_topLVL(),
|
||
|
||
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
|
||
|
||
remove_words_containing_Numbers(),
|
||
|
||
|
||
|
||
##spacyParse
|
||
|
||
removeENT("PERSON"),
|
||
keepPOS(["NOUN"]),
|
||
|
||
#ODER
|
||
|
||
lemmatize(),
|
||
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
|
||
|
||
|
||
# evtl.
|
||
spellCorrection(),
|
||
keepUniqeTokens(),
|
||
|
||
]
|
||
|
||
|
||
|
||
|
||
"""
|
||
|
||
"""
|
||
filter_tokens=[
|
||
#removeENT(["PERSON"]),
|
||
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
||
#idee rechtschreibkorrektur --> PyEnchant
|
||
#idee thesaurus --> WordNet, eigener
|
||
|
||
remove_words_containing_Numbers(),
|
||
|
||
removePOS(["PUNCT","SPACE","NUM"]),
|
||
|
||
removeWords(de_stop_words+custom_words),
|
||
|
||
remove_long_words(),
|
||
remove_short_words(),
|
||
remove_first_names(),
|
||
|
||
keepPOS(["NOUN"]),
|
||
|
||
]
|
||
"""
|