420 lines
9.4 KiB
Python
420 lines
9.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
|
|
import time
|
|
start = time.time()
|
|
|
|
import logging
|
|
|
|
import csv
|
|
import functools
|
|
import os.path
|
|
import re
|
|
import subprocess
|
|
import time
|
|
import xml.etree.ElementTree as ET
|
|
import sys
|
|
import spacy
|
|
import textacy
|
|
from scipy import *
|
|
from textacy import Vectorizer
|
|
import warnings
|
|
import configparser as ConfigParser
|
|
import sys
|
|
|
|
|
|
csv.field_size_limit(sys.maxsize)
|
|
|
|
|
|
|
|
|
|
# Load the configuration file
|
|
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
|
|
|
|
config = ConfigParser.ConfigParser()
|
|
with open(config_ini) as f:
|
|
config.read_file(f)
|
|
|
|
|
|
|
|
|
|
# config logging
|
|
logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
|
|
|
|
|
|
|
thesauruspath = config.get("filepath","thesauruspath")
|
|
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
|
|
|
|
|
DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen
|
|
de_stop_words=list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)
|
|
|
|
|
|
LEMMAS=config.get("filepath","lemmas")
|
|
|
|
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
|
|
|
|
|
|
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
|
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
|
|
|
|
|
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
|
|
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
|
|
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
|
|
|
|
|
|
def printlog(string, level="INFO"):
|
|
"""log and prints"""
|
|
print(string)
|
|
if level=="INFO":
|
|
logging.info(string)
|
|
elif level=="DEBUG":
|
|
logging.debug(string)
|
|
elif level == "WARNING":
|
|
logging.warning(string)
|
|
printlog("Load functions")
|
|
|
|
def compose(*functions):
|
|
def compose2(f, g):
|
|
return lambda x: f(g(x))
|
|
return functools.reduce(compose2, functions, lambda x: x)
|
|
|
|
def get_calling_function():
|
|
"""finds the calling function in many decent cases.
|
|
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
|
|
"""
|
|
fr = sys._getframe(1) # inspect.stack()[1][0]
|
|
co = fr.f_code
|
|
for get in (
|
|
lambda:fr.f_globals[co.co_name],
|
|
lambda:getattr(fr.f_locals['self'], co.co_name),
|
|
lambda:getattr(fr.f_locals['cls'], co.co_name),
|
|
lambda:fr.f_back.f_locals[co.co_name], # nested
|
|
lambda:fr.f_back.f_locals['func'], # decorators
|
|
lambda:fr.f_back.f_locals['meth'],
|
|
lambda:fr.f_back.f_locals['f'],
|
|
):
|
|
try:
|
|
func = get()
|
|
except (KeyError, AttributeError):
|
|
pass
|
|
else:
|
|
if func.__code__ == co:
|
|
return func
|
|
raise AttributeError("func not found")
|
|
|
|
|
|
def printRandomDoc(textacyCorpus):
|
|
import random
|
|
print()
|
|
|
|
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
printlog("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
|
|
print()
|
|
|
|
|
|
|
|
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|
"""
|
|
:param path2csv: string
|
|
:param content_collumn_name: string
|
|
:return: string-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
content_collumn = 0 # standardvalue
|
|
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
# look for desired column
|
|
for j,col in enumerate(lst):
|
|
if col == content_collumn_name:
|
|
content_collumn = j
|
|
else:
|
|
yield lst[content_collumn]
|
|
|
|
|
|
|
|
############# return bool
|
|
|
|
def keepPOS(pos_list):
|
|
return lambda tok : tok.pos_ in pos_list
|
|
|
|
|
|
def removePOS(pos_list):
|
|
return lambda tok : tok.pos_ not in pos_list
|
|
|
|
|
|
def removeWords(words, keep=None):
|
|
if hasattr(keep, '__iter__'):
|
|
for k in keep:
|
|
try:
|
|
words.remove(k)
|
|
except ValueError:
|
|
pass
|
|
|
|
return lambda tok : tok.lower_ not in words
|
|
|
|
|
|
def keepENT(ent_list):
|
|
return lambda tok : tok.ent_type_ in ent_list
|
|
|
|
|
|
def removeENT(ent_list):
|
|
return lambda tok: tok.ent_type_ not in ent_list
|
|
|
|
|
|
def remove_words_containing_Numbers():
|
|
return lambda tok: not bool(re.search('\d', tok.lower_))
|
|
|
|
|
|
def remove_words_containing_specialCharacters():
|
|
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
|
|
|
|
|
|
def remove_long_words():
|
|
return lambda tok: not len(tok.lower_) < 2
|
|
|
|
def remove_short_words():
|
|
return lambda tok: not len(tok.lower_) > 35
|
|
|
|
def remove_first_names():
|
|
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
|
|
|
|
############# strings
|
|
|
|
def stringcleaning(stringstream, funclist):
|
|
for string in stringstream:
|
|
for f in funclist:
|
|
string = f(string)
|
|
yield string
|
|
|
|
|
|
def remove_words_containing_topLVL():
|
|
return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ])
|
|
|
|
|
|
def replaceSpecialChars(replace_with=" "):
|
|
return lambda string: re.sub(regex_specialChars, replace_with, string.lower())
|
|
|
|
|
|
def replaceNumbers(replace_with="NUMBER"):
|
|
return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with)
|
|
|
|
|
|
def replacePhonenumbers(replace_with="PHONENUMBER"):
|
|
return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with)
|
|
|
|
|
|
def replaceHardS(replace_with="ss"):
|
|
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
|
|
|
|
|
|
def fixUnicode():
|
|
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
|
|
|
|
|
|
def lemmatizeWord(word,filepath=LEMMAS):
|
|
"""http://www.lexiconista.com/datasets/lemmatization/"""
|
|
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
|
|
if word.lower() == line.split()[1].strip().lower():
|
|
return line.split()[0].strip().lower()
|
|
return word.lower() # falls nix gefunden wurde
|
|
|
|
|
|
def lemmatize():
|
|
#todo https://alpha.spacy.io/docs/usage/adding-languages#lemmatizer
|
|
return lambda tok: lemmatizeWord(tok.lower_)
|
|
|
|
|
|
def processTextstream(textstream, string_funclist, tok_funclist,parser=DE_PARSER):
|
|
"""
|
|
:param textstream: string-gen
|
|
:param funclist: [func]
|
|
:param parser: spacy-parser
|
|
:return: string-gen
|
|
"""
|
|
pipe = parser.pipe(stringcleaning(textstream,string_funclist))
|
|
|
|
for doc in pipe:
|
|
|
|
tokens = [tok for tok in doc]
|
|
|
|
tokens = processTokens(tokens,tok_funclist,parser)
|
|
|
|
yield " ".join([tok.lower_ for tok in tokens])
|
|
|
|
|
|
def processTokens(tokens, funclist, parser):
|
|
# in:tokenlist, funclist
|
|
# out: tokenlist
|
|
for f in funclist:
|
|
|
|
tokens = list(filter(f, tokens))
|
|
|
|
return tokens
|
|
|
|
|
|
string_comp=[
|
|
replaceHardS(),
|
|
remove_words_containing_topLVL(),
|
|
replaceSpecialChars(),
|
|
]
|
|
|
|
tok_comp=[
|
|
removeENT(["PERSON"]),
|
|
remove_words_containing_Numbers(),
|
|
#keepPOS(["NOUN"]),
|
|
removePOS(["PUNCT","SPACE","NUM"]),
|
|
removeWords(de_stop_words),
|
|
|
|
remove_long_words(),
|
|
remove_short_words(),
|
|
|
|
remove_first_names()
|
|
]
|
|
|
|
|
|
|
|
"""
|
|
pipe=[
|
|
|
|
##String
|
|
|
|
fixUnicode(),
|
|
replaceHardS(),
|
|
resolveAbbrivations(),
|
|
|
|
remove_words_containing_topLVL(),
|
|
|
|
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
|
|
|
|
remove_words_containing_Numbers(),
|
|
|
|
|
|
|
|
##spacyParse
|
|
|
|
removeENT("PERSON"),
|
|
keepPOS(["NOUN"]),
|
|
|
|
#ODER
|
|
|
|
lemmatize(),
|
|
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
|
|
|
|
|
|
# evtl.
|
|
spellCorrection(),
|
|
keepUniqeTokens(),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
path2csv = "M42-Export/Tickets_med.csv"
|
|
|
|
ticketcorpus = textacy.Corpus(DE_PARSER)
|
|
|
|
|
|
## add files to textacy-corpus,
|
|
printlog("add texts to textacy-corpus")
|
|
ticketcorpus.add_texts(
|
|
processTextstream(csv_to_contentStream(path2csv,"Description"), string_funclist=string_comp,tok_funclist=tok_comp)
|
|
)
|
|
|
|
for i in range(10):
|
|
printRandomDoc(ticketcorpus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
words = [
|
|
"uniaccount",
|
|
"nr54065467",
|
|
"nr54065467",
|
|
"455a33c5,"
|
|
"tvt?=",
|
|
"tanja.saborowski@tu-dortmund.de",
|
|
"-",
|
|
"m-sw1-vl4053.itmc.tu-dortmund.de",
|
|
"------problem--------"
|
|
]
|
|
|
|
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
|
|
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
|
|
|
|
for w in words:
|
|
print(stringcleaning(w,string_comp))
|
|
#print(bool(re.search(r'\.[a-z]{2,3}(\.[a-z]{2,3})?',w)))
|
|
#print(bool(re.search(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]',w)))
|
|
#result = specialFinder.sub(" ", w)
|
|
#print(re.sub(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]'," ",w))
|
|
|
|
#print(re.sub(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', " ", w))
|
|
|
|
"""
|
|
|
|
spracherkennung
|
|
alles nach grüße ist irrelevant außer PS:
|
|
|
|
vllt kategorien in unterkategorien aufteilen
|
|
|
|
allg:
|
|
utf-korregieren,
|
|
|
|
emails, urls, nummern raus
|
|
vllt sogar alles, was ebend jenes enthält (oder auf .toplvldomain bzw. sonderzeichen enthält oder alles was ein @ enthält
|
|
|
|
sinnvoller wörter von müll trennen: 8203;verfügung -> bei sonderzeichen wörter trennen
|
|
|
|
abkürzungen raus: m.a, o.ä.
|
|
|
|
wörter korrigieren
|
|
|
|
sinnlose bsp: nr54065467 455a33c5 tvt?= ------problem--------
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|