445 lines
12 KiB
Python
445 lines
12 KiB
Python
# -*- coding: utf-8 -*-
|
|
import time
|
|
start = time.time()
|
|
|
|
|
|
import csv
|
|
import functools
|
|
import os.path
|
|
import re
|
|
import subprocess
|
|
import time
|
|
import xml.etree.ElementTree as ET
|
|
import sys
|
|
import spacy
|
|
import textacy
|
|
from scipy import *
|
|
from textacy import Vectorizer
|
|
import warnings
|
|
csv.field_size_limit(sys.maxsize)
|
|
|
|
|
|
|
|
# Load the configuration file
|
|
import configparser as ConfigParser
|
|
config = ConfigParser.ConfigParser()
|
|
with open("config.ini") as f:
|
|
config.read_file(f)
|
|
|
|
|
|
|
|
path2xml = config.get("default","path2xml")
|
|
thesauruspath = config.get("default","thesauruspath")
|
|
|
|
|
|
DE_PARSER = spacy.load("de")
|
|
|
|
de_stop_words=list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)
|
|
|
|
|
|
corpus = textacy.Corpus(DE_PARSER)
|
|
|
|
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
|
|
|
|
|
|
|
|
|
############# misc
|
|
def compose(*functions):
|
|
def compose2(f, g):
|
|
return lambda x: f(g(x))
|
|
return functools.reduce(compose2, functions, lambda x: x)
|
|
|
|
def get_calling_function():
|
|
"""finds the calling function in many decent cases.
|
|
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
|
|
"""
|
|
fr = sys._getframe(1) # inspect.stack()[1][0]
|
|
co = fr.f_code
|
|
for get in (
|
|
lambda:fr.f_globals[co.co_name],
|
|
lambda:getattr(fr.f_locals['self'], co.co_name),
|
|
lambda:getattr(fr.f_locals['cls'], co.co_name),
|
|
lambda:fr.f_back.f_locals[co.co_name], # nested
|
|
lambda:fr.f_back.f_locals['func'], # decorators
|
|
lambda:fr.f_back.f_locals['meth'],
|
|
lambda:fr.f_back.f_locals['f'],
|
|
):
|
|
try:
|
|
func = get()
|
|
except (KeyError, AttributeError):
|
|
pass
|
|
else:
|
|
if func.__code__ == co:
|
|
return func
|
|
raise AttributeError("func not found")
|
|
|
|
def printRandomDoc(textacyCorpus):
|
|
import random
|
|
print()
|
|
|
|
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
|
|
print()
|
|
|
|
|
|
|
|
|
|
|
|
############# on xml
|
|
def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
|
|
"""
|
|
generates strings from XML
|
|
:param path2xml:
|
|
:param main_textfield:
|
|
:param cleaning_function:
|
|
:yields strings
|
|
"""
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for ticket in root:
|
|
for field in ticket:
|
|
if field.tag == main_textfield:
|
|
yield field.text
|
|
def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']):
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for ticket in root:
|
|
metadata = {}
|
|
for field in ticket:
|
|
if field.tag not in leave_out:
|
|
|
|
metadata[field.tag] = field.text
|
|
|
|
yield metadata
|
|
|
|
|
|
|
|
############# on csv
|
|
|
|
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|
"""
|
|
:param path2csv: string
|
|
:param content_collumn_name: string
|
|
:return: string-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
content_collumn = 0 # standardvalue
|
|
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
# look for desired column
|
|
for j,col in enumerate(lst):
|
|
if col == content_collumn_name:
|
|
content_collumn = j
|
|
else:
|
|
yield lst[content_collumn]
|
|
def csv_to_metaStream(path2csv: str, metalist: [str]):
|
|
"""
|
|
:param path2csv: string
|
|
:param metalist: list of strings
|
|
:return: dict-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
|
|
content_collumn = 0 # standardvalue
|
|
metaindices = []
|
|
metadata_temp = {}
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
for j,col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
|
|
for key in metalist:
|
|
if key == col:
|
|
metaindices.append(j)
|
|
metadata_temp = dict(zip(metalist,metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
|
|
|
|
else:
|
|
metadata = metadata_temp.copy()
|
|
for key,value in metadata.items():
|
|
metadata[key] = lst[value]
|
|
yield metadata
|
|
|
|
|
|
############# on str-gen
|
|
|
|
|
|
|
|
|
|
def processTokens(tokens, funclist, parser):
|
|
# in:tokenlist, funclist
|
|
# out: tokenlist
|
|
for f in funclist:
|
|
if 'bool' in str(f.__annotations__):
|
|
tokens = list(filter(f, tokens))
|
|
|
|
elif 'str' in str(f.__annotations__):
|
|
tokens = list(map(f, tokens)) # purer text
|
|
doc = parser(" ".join(tokens)) # geparsed
|
|
tokens = [tok for tok in doc] # nur tokens
|
|
|
|
elif 'spacy.tokens.doc.Doc' in str(f.__annotations__):
|
|
toks = f(tokens)
|
|
tokens = [tok for tok in toks]
|
|
|
|
else:
|
|
warnings.warn("Unknown Annotation while preprocessing. Function: {0}".format(str(f)))
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
|
|
############# return docs
|
|
|
|
def keepUniqueTokens() -> spacy.tokens.Doc:
|
|
#todo in:tok out:doc
|
|
ret = lambda doc: (set([tok.lower_ for tok in doc]))
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def processTextstream(textstream, funclist, parser=DE_PARSER):
|
|
"""
|
|
:param textstream: string-gen
|
|
:param funclist: [func]
|
|
:param parser: spacy-parser
|
|
:return: string-gen
|
|
"""
|
|
# input:str-stream output:str-stream
|
|
pipe = parser.pipe(textstream)
|
|
|
|
for doc in pipe:
|
|
tokens = [tok for tok in doc]
|
|
tokens = processTokens(tokens,funclist,parser)
|
|
yield " ".join([tok.lower_ for tok in tokens])
|
|
|
|
def processDictstream(dictstream, funcdict, parser=DE_PARSER):
|
|
"""
|
|
|
|
:param dictstream: dict-gen
|
|
:param funcdict:
|
|
clean_in_meta = {
|
|
"Solution":funclist,
|
|
...
|
|
}
|
|
|
|
:param parser: spacy-parser
|
|
:return: dict-gen
|
|
"""
|
|
for dic in dictstream:
|
|
result = {}
|
|
for key, value in dic.items():
|
|
|
|
if key in funcdict:
|
|
|
|
doc = parser(value)
|
|
tokens = [tok for tok in doc]
|
|
funclist = funcdict[key]
|
|
|
|
tokens = processTokens(tokens,funclist,parser)
|
|
|
|
|
|
result[key] = " ".join([tok.lower_ for tok in tokens])
|
|
|
|
|
|
else:
|
|
result[key] = value
|
|
yield result
|
|
|
|
|
|
|
|
############# return tokens
|
|
|
|
def keepPOS(pos_list) -> bool:
|
|
ret = lambda tok : tok.pos_ in pos_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def removePOS(pos_list)-> bool:
|
|
ret = lambda tok : tok.pos_ not in pos_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def removeWords(words, keep=None)-> bool:
|
|
#todo in:str oder str-list
|
|
if hasattr(keep, '__iter__'):
|
|
for k in keep:
|
|
try:
|
|
words.remove(k)
|
|
except ValueError:
|
|
pass
|
|
|
|
ret = lambda tok : tok.lower_ not in words
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def keepENT(ent_list) -> bool:
|
|
ret = lambda tok : tok.ent_type_ in ent_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def removeENT(ent_list) -> bool:
|
|
ret = lambda tok: tok.ent_type_ not in ent_list
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def lemmatize() -> str:
|
|
ret = lambda tok: tok.lemma_
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def normalizeSynonyms(default_return_first_Syn=False) -> str:
|
|
ret = lambda tok : getFirstSynonym(tok.lower_, default_return_first_Syn=default_return_first_Syn)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def getFirstSynonym(word, thesaurus=THESAURUS, default_return_first_Syn=False):
|
|
if not isinstance(word, str):
|
|
return str(word)
|
|
|
|
word = word.lower()
|
|
|
|
# durch den thesaurrus iterieren
|
|
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
|
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
|
if word == syn:
|
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
|
else: # falls es ein satz ist
|
|
if word in syn:
|
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
|
return str(word) # zur Not, das ursrpüngliche Wort zurückgeben
|
|
|
|
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
|
|
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
|
# nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus
|
|
for w in syn.split(" "):
|
|
if not re.match(r'\([^)]+\)', w):
|
|
return w
|
|
|
|
if default_return_first_Syn:
|
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
|
for w in syn_block:
|
|
if not re.match(r'\([^)]+\)', w):
|
|
return w
|
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
|
|
|
|
|
|
|
############# return strings
|
|
|
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
|
|
def replaceEmails(replace_with="EMAIL") -> str:
|
|
ret = lambda tok : emailFinder.sub(replace_with, tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceURLs(replace_with="URL") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_urls(tok.lower_,replace_with=replace_with)
|
|
#ret = lambda tok: urlFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceTwitterMentions(replace_with="TWITTER_MENTION") -> str:
|
|
ret = lambda tok : mentionFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replaceNumbers(replace_with="NUMBER") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_numbers(tok.lower_, replace_with=replace_with)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
def replacePhonenumbers(replace_with="PHONENUMBER") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_phone_numbers(tok.lower_, replace_with=replace_with)
|
|
|
|
ret.__annotations__ = get_calling_function().__annotations__
|
|
return ret
|
|
|
|
|
|
def resolveAbbreviations():
|
|
pass #todo
|
|
|
|
|
|
metaliste = [
|
|
"Subject",
|
|
"categoryName",
|
|
"Solution"
|
|
]
|
|
path2csv = "M42-Export/Tickets_small.csv"
|
|
|
|
|
|
|
|
clean_in_meta = {
|
|
"Solution":[removePOS(["SPACE"])],
|
|
"Subject":[removePOS(["SPACE","PUNCT"])]
|
|
}
|
|
|
|
|
|
clean_in_content=[
|
|
removePOS(["SPACE","PUNCT","NUM"]),
|
|
keepPOS(["NOUN"]),
|
|
replaceURLs(),
|
|
replaceEmails(),
|
|
removeWords(de_stop_words),
|
|
lemmatize()
|
|
|
|
]
|
|
|
|
|
|
|
|
## add files to textacy-corpus,
|
|
print("add texts to textacy-corpus...")
|
|
corpus.add_texts(
|
|
processTextstream(csv_to_contentStream(path2csv,"Description"), clean_in_content),
|
|
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
|
|
)
|
|
|
|
printRandomDoc(corpus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end = time.time()
|
|
print("\n\n\nTime Elapsed:{0}".format(end - start)) |