659 lines
15 KiB
Python
659 lines
15 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
|
|
import time
|
|
|
|
import enchant
|
|
|
|
start = time.time()
|
|
|
|
import logging
|
|
|
|
import csv
|
|
import functools
|
|
import os.path
|
|
import re
|
|
import subprocess
|
|
import time
|
|
import xml.etree.ElementTree as ET
|
|
import sys
|
|
import spacy
|
|
import textacy
|
|
from scipy import *
|
|
from textacy import Vectorizer
|
|
import warnings
|
|
import configparser as ConfigParser
|
|
import sys
|
|
import hunspell
|
|
from postal.parser import parse_address
|
|
|
|
|
|
|
|
csv.field_size_limit(sys.maxsize)
|
|
|
|
|
|
|
|
|
|
# Load the configuration file
|
|
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
|
|
|
|
config = ConfigParser.ConfigParser()
|
|
with open(config_ini) as f:
|
|
config.read_file(f)
|
|
|
|
|
|
|
|
|
|
# config logging
|
|
logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
|
|
|
|
|
|
|
thesauruspath = config.get("filepath","thesauruspath")
|
|
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
|
|
|
from langdetect import detect
|
|
|
|
|
|
|
|
DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen
|
|
#EN_PARSER = spacy.load("en")
|
|
|
|
|
|
|
|
|
|
def replaceRockDots():
|
|
return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
|
|
|
|
"""
|
|
de_stop_words= set(
|
|
list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) +
|
|
list(textacy.fileio.read_file_lines("stopwords-de.txt"))
|
|
)
|
|
|
|
|
|
LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
|
|
|
|
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
|
|
"""
|
|
|
|
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("de_stop_words.txt")))
|
|
|
|
#en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS))
|
|
|
|
LEMMAS = list(textacy.fileio.read_file_lines("lemmas.txt"))
|
|
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("firstnames.txt")))
|
|
|
|
print(de_stop_words[10:30])
|
|
|
|
|
|
print(LEMMAS[10:30])
|
|
print(VORNAMEN[10:30])
|
|
|
|
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
|
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
|
|
|
|
|
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
|
|
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
|
|
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
|
|
|
|
|
|
def printlog(string, level="INFO"):
|
|
"""log and prints"""
|
|
print(string)
|
|
if level=="INFO":
|
|
logging.info(string)
|
|
elif level=="DEBUG":
|
|
logging.debug(string)
|
|
elif level == "WARNING":
|
|
logging.warning(string)
|
|
printlog("Load functions")
|
|
|
|
def compose(*functions):
|
|
def compose2(f, g):
|
|
return lambda x: f(g(x))
|
|
return functools.reduce(compose2, functions, lambda x: x)
|
|
|
|
def get_calling_function():
|
|
"""finds the calling function in many decent cases.
|
|
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
|
|
"""
|
|
fr = sys._getframe(1) # inspect.stack()[1][0]
|
|
co = fr.f_code
|
|
for get in (
|
|
lambda:fr.f_globals[co.co_name],
|
|
lambda:getattr(fr.f_locals['self'], co.co_name),
|
|
lambda:getattr(fr.f_locals['cls'], co.co_name),
|
|
lambda:fr.f_back.f_locals[co.co_name], # nested
|
|
lambda:fr.f_back.f_locals['func'], # decorators
|
|
lambda:fr.f_back.f_locals['meth'],
|
|
lambda:fr.f_back.f_locals['f'],
|
|
):
|
|
try:
|
|
func = get()
|
|
except (KeyError, AttributeError):
|
|
pass
|
|
else:
|
|
if func.__code__ == co:
|
|
return func
|
|
raise AttributeError("func not found")
|
|
|
|
|
|
def printRandomDoc(textacyCorpus):
|
|
import random
|
|
print()
|
|
|
|
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
printlog("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
|
|
print()
|
|
|
|
|
|
|
|
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|
"""
|
|
:param path2csv: string
|
|
:param content_collumn_name: string
|
|
:return: string-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
content_collumn = 0 # standardvalue
|
|
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
# look for desired column
|
|
for j,col in enumerate(lst):
|
|
if col == content_collumn_name:
|
|
content_collumn = j
|
|
else:
|
|
yield lst[content_collumn]
|
|
|
|
|
|
|
|
############# filter tokens
|
|
|
|
def keepPOS(pos_list):
|
|
return lambda tok : tok.pos_ in pos_list
|
|
|
|
|
|
def removePOS(pos_list):
|
|
return lambda tok : tok.pos_ not in pos_list
|
|
|
|
|
|
def removeWords(words, keep=None):
|
|
if hasattr(keep, '__iter__'):
|
|
for k in keep:
|
|
try:
|
|
words.remove(k)
|
|
except ValueError:
|
|
pass
|
|
|
|
return lambda tok : tok.lower_ not in words
|
|
|
|
|
|
def keepENT(ent_list):
|
|
return lambda tok : tok.ent_type_ in ent_list
|
|
|
|
|
|
def removeENT(ent_list):
|
|
return lambda tok: tok.ent_type_ not in ent_list
|
|
|
|
|
|
def remove_words_containing_Numbers():
|
|
return lambda tok: not bool(re.search('\d', tok.lower_))
|
|
|
|
"""
|
|
def remove_words_containing_topLVL():
|
|
return lambda tok: not bool(re.search(regex_topLvl, tok.lower_))
|
|
"""
|
|
|
|
def remove_words_containing_specialCharacters():
|
|
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
|
|
|
|
|
|
def remove_long_words():
|
|
return lambda tok: not len(tok.lower_) < 2
|
|
|
|
def remove_short_words():
|
|
return lambda tok: not len(tok.lower_) > 35
|
|
|
|
def remove_first_names():
|
|
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
|
|
|
|
|
|
|
|
|
|
|
|
############# strings
|
|
|
|
def remove_addresses(string):
|
|
pass #todo
|
|
|
|
def stringcleaning(stringstream, funclist):
|
|
for string in stringstream:
|
|
for f in funclist:
|
|
string = f(string)
|
|
yield string
|
|
|
|
def cut_after(word="gruss"):
|
|
return lambda string: string.rpartition(word)[0] if word in string else string
|
|
|
|
def seperate_words_on_regex(regex=regex_specialChars):
|
|
return lambda string: " ".join(re.compile(regex).split(string))
|
|
|
|
|
|
|
|
def remove_words_containing_topLVL():
|
|
return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ])
|
|
|
|
|
|
def replaceSpecialChars(replace_with=" "):
|
|
return lambda string: re.sub(regex_specialChars, replace_with, string.lower())
|
|
|
|
|
|
def replaceNumbers(replace_with="NUMBER"):
|
|
return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with)
|
|
|
|
|
|
def replacePhonenumbers(replace_with="PHONENUMBER"):
|
|
return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with)
|
|
|
|
|
|
def replaceSharpS(replace_with="ss"):
|
|
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
|
|
|
|
|
|
|
|
|
|
def fixUnicode():
|
|
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
|
|
|
|
"""
|
|
def lemmatizeWord(word,filepath=LEMMAS):
|
|
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
|
|
if word.lower() == line.split()[1].strip().lower():
|
|
return line.split()[0].strip().lower()
|
|
return word.lower() # falls nix gefunden wurde
|
|
"""
|
|
|
|
def create_lemma_dicts(lemmalist=LEMMAS):
|
|
w_dict = {}
|
|
lem_dict = {}
|
|
|
|
for i, line in enumerate(lemmalist):
|
|
try:
|
|
lem_word_pair = line.split()
|
|
|
|
if len(lem_word_pair) != 2:
|
|
print(line)
|
|
|
|
lemma = lem_word_pair[0].strip().lower()
|
|
|
|
word = lem_word_pair[1].strip().lower()
|
|
except:
|
|
print(line)
|
|
|
|
if lemma not in lem_dict:
|
|
lem_dict[lemma] = i
|
|
|
|
if word not in w_dict:
|
|
w_dict[word] = lem_dict[lemma]
|
|
|
|
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
|
|
|
|
return l_dict,w_dict
|
|
|
|
lemma_dict,word_dict = create_lemma_dicts()
|
|
|
|
|
|
|
|
def lemmatizeWord(word,l_dict=lemma_dict,w_dict=word_dict):
|
|
#mehrmals machen
|
|
for i in range(3):
|
|
try:
|
|
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
|
|
except:
|
|
print(word)
|
|
return word
|
|
"""
|
|
def lemmatize():
|
|
return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc])
|
|
"""
|
|
def lemmatize():
|
|
return lambda string: " ".join([lemmatizeWord(s.lower()) for s in string.split()])
|
|
|
|
DE_SPELLCHECKER = enchant.Dict("de_DE")
|
|
EN_SPELLCHECKER = enchant.Dict("en_US")
|
|
|
|
def autocorrectWord(word,spellchecker=DE_SPELLCHECKER):
|
|
|
|
try:
|
|
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
|
|
except:
|
|
return word
|
|
|
|
|
|
|
|
def autocorrect():
|
|
return lambda string: " ".join([autocorrectWord(s.lower()) for s in string.split()])
|
|
|
|
def processTextstream(textstream, pre_parse=None, on_tokens=None, post_parse=None, parser=DE_PARSER):
|
|
"""
|
|
:param textstream: string-gen
|
|
:param funclist: [func]
|
|
:param parser: spacy-parser
|
|
:return: string-gen
|
|
"""
|
|
#pre_parse
|
|
if pre_parse is not None:
|
|
textstream = stringcleaning(textstream, pre_parse)
|
|
|
|
|
|
pipe = parser.pipe(textstream)
|
|
|
|
tokens=[]
|
|
for doc in pipe:
|
|
|
|
tokens = [tok for tok in doc]
|
|
|
|
# in_parse
|
|
if on_tokens is not None:
|
|
tokens = processTokens(tokens, on_tokens)
|
|
|
|
|
|
# post_parse
|
|
if post_parse is not None:
|
|
|
|
#todo vllt doch lieber eine große funktion basteln, dieses zusammenfrickeln nervt
|
|
yield post_parse(parser(" ".join([tok.lower_ for tok in tokens])))
|
|
|
|
|
|
else:
|
|
yield " ".join([tok.lower_ for tok in tokens])
|
|
|
|
|
|
|
|
|
|
|
|
def processTokens(tokens, funclist):
|
|
# in:tokenlist, funclist
|
|
# out: tokenlist
|
|
for f in funclist:
|
|
|
|
tokens = list(filter(f, tokens))
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
pre_parse=[
|
|
fixUnicode(),
|
|
replaceRockDots(),
|
|
remove_words_containing_topLVL(),
|
|
seperate_words_on_regex(),
|
|
lemmatize(),
|
|
cut_after(),
|
|
autocorrect()
|
|
|
|
]
|
|
|
|
custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","voraus",
|
|
"hallo","gerne","freundlich","fragen","fehler","bitten","ehre", "lieb",
|
|
"versuchen","unbestimmt","woche","tadelos", "klappen" ,"mittlerweile", "bekommen","erreichbar"
|
|
]
|
|
|
|
|
|
on_tokens=[
|
|
#removeENT(["PERSON"]),
|
|
#idee addressen enfernen #bisher mit cut_after("gruss")
|
|
#idee rechtschreibkorrektur
|
|
#idee thesaurus
|
|
|
|
remove_words_containing_Numbers(),
|
|
|
|
removePOS(["PUNCT","SPACE","NUM"]),
|
|
|
|
removeWords(de_stop_words+custom_words),
|
|
|
|
remove_long_words(),
|
|
remove_short_words(),
|
|
remove_first_names(),
|
|
|
|
#keepPOS(["NOUN"]),
|
|
|
|
]
|
|
|
|
post_parse=None
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
pipe=[
|
|
|
|
##String
|
|
|
|
fixUnicode(),
|
|
replaceHardS(),
|
|
resolveAbbrivations(),
|
|
|
|
remove_words_containing_topLVL(),
|
|
|
|
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
|
|
|
|
remove_words_containing_Numbers(),
|
|
|
|
|
|
|
|
##spacyParse
|
|
|
|
removeENT("PERSON"),
|
|
keepPOS(["NOUN"]),
|
|
|
|
#ODER
|
|
|
|
lemmatize(),
|
|
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
|
|
|
|
|
|
# evtl.
|
|
spellCorrection(),
|
|
keepUniqeTokens(),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
path2csv = "M42-Export/Tickets_med.csv"
|
|
path2csv = "M42-Export/de_tickets.csv"
|
|
|
|
de_corpus = textacy.Corpus(DE_PARSER)
|
|
#en_corpus = textacy.Corpus(EN_PARSER)
|
|
|
|
|
|
|
|
## add files to textacy-corpus,
|
|
printlog("add texts to textacy-corpus")
|
|
de_corpus.add_texts(
|
|
processTextstream(csv_to_contentStream(path2csv,"Description"), pre_parse=pre_parse, on_tokens=on_tokens, post_parse=post_parse)
|
|
)
|
|
|
|
for i in range(10):
|
|
printRandomDoc(de_corpus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
spracherkennung
|
|
alles nach grüße ist irrelevant außer PS:
|
|
|
|
vllt kategorien in unterkategorien aufteilen
|
|
|
|
allg:
|
|
utf-korregieren,
|
|
|
|
emails, urls, nummern raus
|
|
vllt sogar alles, was ebend jenes enthält (oder auf .toplvldomain bzw. sonderzeichen enthält oder alles was ein @ enthält
|
|
|
|
sinnvoller wörter von müll trennen: 8203;verfügung -> bei sonderzeichen wörter trennen
|
|
|
|
abkürzungen raus: m.a, o.ä.
|
|
|
|
wörter korrigieren
|
|
|
|
sinnlose bsp: nr54065467 455a33c5 tvt?= ------problem--------
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
############################################ Topic Modeling #############################################
|
|
print("\n\n")
|
|
start = time.time()
|
|
|
|
|
|
|
|
# build citionary of ticketcategories
|
|
labelist = []
|
|
|
|
for texdoc in de_corpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
|
|
labelist.append(texdoc.metadata["categoryName"])
|
|
|
|
|
|
LABELDICT = {k: v for v, k in enumerate(labelist)}
|
|
print(LABELDICT)
|
|
|
|
|
|
|
|
def label2ID(label,labeldict=LABELDICT):
|
|
return labeldict.get(label,len(labeldict))
|
|
|
|
def generate_labled_lines(textacyCorpus):
|
|
for doc in textacyCorpus:
|
|
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
|
|
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
####################'####################' todo alles in config
|
|
|
|
ngrams = 1
|
|
|
|
min_df = 0.1
|
|
max_df = 0.9
|
|
no_below = 20
|
|
no_above = 0.5
|
|
|
|
topicModel = 'lda'
|
|
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
|
|
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
|
|
|
top_topic_words = 10
|
|
top_document_labels_per_topic = 5
|
|
|
|
n_topics = 20 #len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
|
|
|
|
|
|
|
end = time.time()
|
|
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
|
|
|
|
|
|
|
|
|
####################'####################
|
|
|
|
|
|
|
|
|
|
printlog("vectorize corpus...")
|
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
|
|
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in de_corpus)
|
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
|
id2term = vectorizer.__getattribute__("id_to_term")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
|
|
|
|
# Initialize and train a topic model
|
|
printlog("Initialize and train a topic model..")
|
|
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
|
|
model.fit(doc_term_matrix)
|
|
|
|
#Transform the corpus and interpret our model:
|
|
printlog("Transform the corpus and interpret our model..")
|
|
doc_topic_matrix = model.transform(doc_term_matrix)
|
|
print()
|
|
|
|
|
|
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
|
|
print('topic', topic_idx, ':', ' '.join(top_terms))
|
|
|
|
|
|
print()
|
|
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
|
print(topic_idx)
|
|
for j in top_docs:
|
|
print(de_corpus[j].metadata['categoryName'])
|
|
|
|
#####################################################################################################################
|
|
print()
|
|
print()
|
|
|
|
|
|
|
|
end = time.time()
|
|
printlog("\n\n\nTime Elapsed Topic Modeling:{0}\n\n".format(end - start)) |