topicModelingTickets/preprocessing.py

405 lines
11 KiB
Python

# -*- coding: utf-8 -*-
import csv
import functools
import os.path
import re
import subprocess
import time
import xml.etree.ElementTree as ET
import sys
import spacy
import textacy
from scipy import *
from textacy import Vectorizer
csv.field_size_limit(sys.maxsize)
# Load the configuration file
import configparser as ConfigParser
config = ConfigParser.ConfigParser()
with open("config.ini") as f:
config.read_file(f)
#todo print&log
path2xml = config.get("default","path2xml")
PARSER = spacy.load(config.get("default","language"))
corpus = textacy.Corpus(PARSER)
thesauruspath = config.get("default","thesauruspath")
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) + config.get("preprocessing","custom_words").split(",")
def compose(*functions):
def compose2(f, g):
return lambda x: f(g(x))
return functools.reduce(compose2, functions, lambda x: x)
def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
"""
generates strings from XML
:param path2xml:
:param main_textfield:
:param cleaning_function:
:yields strings
"""
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
for ticket in root:
for field in ticket:
if field.tag == main_textfield:
yield field.text
def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']):
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
for ticket in root:
metadata = {}
for field in ticket:
if field.tag not in leave_out:
metadata[field.tag] = field.text
yield metadata
def printRandomDoc(textacyCorpus):
import random
print()
print("len(textacyCorpus) = %i" % len(textacyCorpus))
randIndex = int((len(textacyCorpus) - 1) * random.random())
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
print()
def processDictstream(dictstream, funcdict, parser=PARSER):
for dic in dictstream:
result = {}
for key, value in dic.items():
if key in funcdict:
result[key] = funcdict[key](parser(value))
else:
result[key] = value
yield result
def processTextstream(textstream, func, parser=PARSER):
# input str-stream output str-stream
pipe = parser.pipe(textstream)
for doc in pipe:
yield func(doc)
def keepOnlyPOS(pos_list, parser=PARSER):
return lambda doc : parser(" ".join([tok.text for tok in doc if tok.pos_ in pos_list]))
def removeAllPOS(pos_list, parser=PARSER):
return lambda doc: parser(" ".join([tok.text for tok in doc if tok.pos_ not in pos_list]))
def keepOnlyENT(ent_list,parser=PARSER):
return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ in ent_list]))
def removeAllENT(ent_list, parser=PARSER):
return lambda doc: parser(" ".join([tok.text for tok in doc if tok.ent_type_ not in ent_list]))
def keepUniqueTokens(parser=PARSER):
return lambda doc: parser(" ".join(set([tok.text for tok in doc])))
def lemmatize(parser=PARSER):
return lambda doc: parser(" ".join([tok.lemma_ for tok in doc]))
doc2String = lambda doc : doc.text
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
def replaceURLs(replace_with="URL",parser=PARSER):
#return lambda doc: parser(textacy.preprocess.replace_urls(doc.text,replace_with=replace_with))
return lambda doc: parser(urlFinder.sub(replace_with,doc.text))
def replaceEmails(replace_with="EMAIL",parser=PARSER):
#return lambda doc: parser(textacy.preprocess.replace_emails(doc.text,replace_with=replace_with))
return lambda doc : parser(emailFinder.sub(replace_with, doc.text))
def replaceTwitterMentions(replace_with="TWITTER_MENTION",parser=PARSER):
return lambda doc : parser(mentionFinder.sub(replace_with, doc.text))
def replaceNumbers(replace_with="NUMBER",parser=PARSER):
return lambda doc: parser(textacy.preprocess.replace_numbers(doc.text, replace_with=replace_with))
def replacePhonenumbers(replace_with="PHONE",parser=PARSER):
return lambda doc: parser(textacy.preprocess.replace_phone_numbers(doc.text, replace_with=replace_with))
def resolveAbbreviations(parser=PARSER):
pass #todo
def removeWords(words, keep=None,parser=PARSER):
if hasattr(keep, '__iter__'):
for k in keep:
try:
words.remove(k)
except ValueError:
pass
return lambda doc : parser(" ".join([tok.text for tok in doc if tok.lower_ not in words]))
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
#return lambda doc : parser(" ".join([tok.lower_ for tok in doc]))
return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc]))
def getFirstSynonym(word, thesaurus, default_return_first_Syn=False):
if not isinstance(word, str):
return str(word)
word = word.lower()
# durch den thesaurrus iterieren
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
for syn in syn_block:
syn = syn.lower()
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
if word == syn:
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
else: # falls es ein satz ist
if word in syn:
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
return str(word) # zur Not, das ursrpüngliche Wort zurückgeben
def getHauptform(syn_block, word, default_return_first_Syn=False):
for syn in syn_block:
syn = syn.lower()
if "hauptform" in syn and len(syn.split(" ")) <= 2:
# nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus
for w in syn.split(" "):
if not re.match(r'\([^)]+\)', w):
return w
if default_return_first_Syn:
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
for w in syn_block:
if not re.match(r'\([^)]+\)', w):
return w
return word # zur Not, das ursrpüngliche Wort zurückgeben
def label2ID(label):
return {
'Neuanschluss' : 0,
'LSF' : 1,
'Video' : 2,
}.get(label,3)
def generate_labled_lines(textacyCorpus):
for doc in textacyCorpus:
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
yield "[" + str(label2ID(doc.metadata["Kategorie"])) + "] " + doc.text
####################'####################'####################'####################'####################'##############
ents = config.get("preprocessing","ents2keep").split(",")
clean_in_content=compose( #anmrk.: unterste-funktion iwrd zuerst ausgeführt
doc2String,
keepUniqueTokens(),
#normalizeSynonyms(default_return_first_Syn=False),
lemmatize(),
replaceEmails(),
replaceURLs(),
replaceTwitterMentions(),
#removeAllENT(ents),
keepOnlyPOS(['NOUN'])
)
clean_in_meta = {
"Loesung":removeAllPOS(["SPACE"]),
"Zusammenfassung":removeAllPOS(["SPACE","PUNCT"])
}
## add files to textacy-corpus,
print("add texts to textacy-corpus...")
corpus.add_texts(
processTextstream(generateMainTextfromTicketXML(path2xml), func=clean_in_content),
processDictstream(generateMetadatafromTicketXML(path2xml), funcdict=clean_in_meta)
)
printRandomDoc(corpus)
#idee 3 versch. Corpi
####################'####################'
####################'####################' todo alles in config
ngrams = (1,2)
min_df = 0
max_df = 1.0
no_below = 20
no_above = 0.5
topicModel = 'lda'
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
top_topic_words = 5
top_document_labels_per_topic = 5
n_topics = len(set(corpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
####################'####################
print("vectorize corpus...")
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus)
doc_term_matrix = vectorizer.fit_transform(terms_list)
id2term = vectorizer.__getattribute__("id_to_term")
"""
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
# Initialize and train a topic model
print("Initialize and train a topic model")
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
model.fit(doc_term_matrix)
#Transform the corpus and interpret our model:
print("Transform the corpus and interpret our model")
doc_topic_matrix = model.transform(doc_term_matrix)
print()
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
print('topic', topic_idx, ':', ' '.join(top_terms))
print()
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
print(topic_idx)
for j in top_docs:
print(corpus[j].metadata['Kategorie'])
#####################################################################################################################
print()
print()
"""
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
jgibbsLLDA_root = "java_LabledLDA/"
filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
#create file
textacy.fileio.write_file_lines(generate_labled_lines(corpus),filepath=filepath)
# wait for file to exist
while not os.path.exists(filepath):
time.sleep(1)
print("start LLDA..")
#run JGibsslda file
FNULL = open(os.devnull, 'w') # supress output
subprocess.call(["java",
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
"jgibblda.LDA",
"-est",
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
"-dfile","tickets.gz",
"-ntopics", str(n_topics)], stdout = FNULL)
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
#print twords
subprocess.call(["gzip",
"-dc",
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
#####################################################################################################################
print()
print()