topicModelingTickets/preprocessing.py

860 lines
24 KiB
Python

# -*- coding: utf-8 -*-
from datetime import datetime
print(datetime.now())
path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
#path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_mini.csv"
path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
path2en_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/en_tickets.csv"
path_csv_split = path2de_csv.split("/")
print(path_csv_split[len(path_csv_split) - 1])
path_csv_split = path2en_csv.split("/")
print(path_csv_split[len(path_csv_split) - 1])
import time
start = time.time()
import logging
from nltk.corpus import stopwords
import csv
import functools
import re
import xml.etree.ElementTree as ET
import spacy
import textacy
from scipy import *
import sys
csv.field_size_limit(sys.maxsize)
# ssh madonna "nohup /usr/bin/python3 -u /home/jannis.grundmann/PycharmProjects/topicModelingTickets/preprocessing.py &> /home/jannis.grundmann/PycharmProjects/topicModelingTickets/printout_preprocessing.log &"
# todo configuration file ?
"""
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
"""
# config logging
logfile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
logging.basicConfig(filename=logfile, level=logging.INFO)
# logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
# THESAURUS
# thesauruspath = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/openthesaurus.csv"
# thesauruspath = config.get("filepath","thesauruspath")
# THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
# SPELLCHECKING
path2words = '/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt'
DE_PARSER = spacy.load("de")
EN_PARSER = spacy.load("en")
"""
de_stop_words= set(
list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) +
list(textacy.fileio.read_file_lines("stopwords-de.txt"))
)
LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
"""
de_stop_words = list(map(textacy.preprocess.normalize_whitespace, textacy.fileio.read_file_lines(
"/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt"))) + list(set(stopwords.words('german')))
en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)+ list(set(stopwords.words('english'))))
LEMMAS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace, textacy.fileio.read_file_lines(
"/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames.txt")))
NOUNS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen2.txt")) + list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen.txt"))
NOUNS = list(map(textacy.preprocess.normalize_whitespace, NOUNS))
"""
print(de_stop_words[10:30])
print(LEMMAS[10:30])
print(VORNAMEN[10:30])
print(NOUNS[10:30])
"""
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
def printlog(string, level="INFO"):
"""log and prints"""
print(string)
if level == "INFO":
logging.info(string)
elif level == "DEBUG":
logging.debug(string)
elif level == "WARNING":
logging.warning(string)
printlog("Load functions")
def compose(*functions):
def compose2(f, g):
return lambda x: f(g(x))
return functools.reduce(compose2, functions, lambda x: x)
def get_calling_function():
"""finds the calling function in many decent cases.
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
"""
fr = sys._getframe(1) # inspect.stack()[1][0]
co = fr.f_code
for get in (
lambda: fr.f_globals[co.co_name],
lambda: getattr(fr.f_locals['self'], co.co_name),
lambda: getattr(fr.f_locals['cls'], co.co_name),
lambda: fr.f_back.f_locals[co.co_name], # nested
lambda: fr.f_back.f_locals['func'], # decorators
lambda: fr.f_back.f_locals['meth'],
lambda: fr.f_back.f_locals['f'],
):
try:
func = get()
except (KeyError, AttributeError):
pass
else:
if func.__code__ == co:
return func
raise AttributeError("func not found")
def printRandomDoc(textacyCorpus):
import random
print()
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
randIndex = int((len(textacyCorpus) - 1) * random.random())
printlog("Index: {0} ; Text: {1} ; Metadata: {2}\n".format(randIndex, textacyCorpus[randIndex].text,
textacyCorpus[randIndex].metadata))
print()
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
"""
:param path2csv: string
:param content_collumn_name: string
:return: string-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
for i, lst in enumerate(stream):
if i == 0:
# look for desired column
for j, col in enumerate(lst):
if col == content_collumn_name:
content_collumn = j
else:
yield lst[content_collumn]
def csv_to_metaStream(path2csv: str, metalist: [str]):
"""
:param path2csv: string
:param metalist: list of strings
:return: dict-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
metaindices = []
metadata_temp = {}
for i, lst in enumerate(stream):
if i == 0:
for j, col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
for key in metalist:
if key == col:
metaindices.append(j)
metadata_temp = dict(
zip(metalist, metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
else:
metadata = metadata_temp.copy()
for key, value in metadata.items():
metadata[key] = lst[value]
yield metadata
def save_corpus(corpus, corpus_path, corpus_name, parser=DE_PARSER):
# save stringstore
stringstore_path = corpus_path + corpus_name + '_strings.json'
with open(stringstore_path, "w") as file:
parser.vocab.strings.dump(file)
# save content
contentpath = corpus_path + corpus_name + "_content.bin"
textacy.fileio.write_spacy_docs((doc.spacy_doc for doc in corpus), contentpath)
# save meta
metapath = corpus_path + corpus_name + "_meta.json"
textacy.fileio.write_json_lines((doc.metadata for doc in corpus), metapath)
############# filter tokens
def keepPOS(pos_list):
return lambda tok: tok.pos_ in pos_list
def keepNouns(noun_list=NOUNS):
return lambda tok: tok.lower_ in noun_list
def removePOS(pos_list):
return lambda tok: tok.pos_ not in pos_list
def removeWords(words, keep=None):
if hasattr(keep, '__iter__'):
for k in keep:
try:
words.remove(k)
except ValueError:
pass
return lambda tok: tok.lower_ not in words
def keepENT(ent_list):
return lambda tok: tok.ent_type_ in ent_list
def removeENT(ent_list):
return lambda tok: tok.ent_type_ not in ent_list
def remove_words_containing_Numbers():
return lambda tok: not bool(re.search('\d', tok.lower_))
"""
def remove_words_containing_topLVL():
return lambda tok: not bool(re.search(regex_topLvl, tok.lower_))
def remove_words_containing_specialCharacters():
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
"""
def remove_long_words():
return lambda tok: not len(tok.lower_) < 2
def remove_short_words():
return lambda tok: not len(tok.lower_) > 35
def remove_first_names():
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
############# strings
def replaceRockDots():
return lambda string: re.sub(r'[ß]', "ss",
(re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
def remove_addresses(string):
pass # todo
"""
def stringcleaning(stringstream, funclist):
for string in stringstream:
for f in funclist:
string = f(string)
yield string
def cut_after(word="gruss"):
return lambda string: string.rpartition(word)[0] if word in string else string
def seperate_words_on_regex(regex=regex_specialChars):
return lambda string: " ".join(re.compile(regex).split(string))
def remove_words_containing_topLVL():
return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ])
def replaceSpecialChars(replace_with=" "):
return lambda string: re.sub(regex_specialChars, replace_with, string.lower())
def replaceNumbers(replace_with="NUMBER"):
return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with)
def replacePhonenumbers(replace_with="PHONENUMBER"):
return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with)
def replaceSharpS(replace_with="ss"):
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
def fixUnicode():
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
"""
"""
def lemmatizeWord(word,filepath=LEMMAS):
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
if word.lower() == line.split()[1].strip().lower():
return line.split()[0].strip().lower()
return word.lower() # falls nix gefunden wurde
def create_lemma_dicts(lemmalist=LEMMAS):
w_dict = {}
lem_dict = {}
for i, line in enumerate(lemmalist):
try:
lem_word_pair = line.split()
if len(lem_word_pair) != 2:
print(line)
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
except:
print(line)
if lemma not in lem_dict:
lem_dict[lemma] = i
if word not in w_dict:
w_dict[word] = lem_dict[lemma]
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
return l_dict,w_dict
lemma_dict,word_dict = create_lemma_dicts()
def lemmatizeWord(word,l_dict=lemma_dict,w_dict=word_dict):
#mehrmals machen
for i in range(3):
try:
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
except:
print(word)
return word
def lemmatize():
return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc])
def lemmatize():
return lambda string: " ".join([lemmatizeWord(s.lower()) for s in string.split()])
DE_SPELLCHECKER = enchant.Dict("de_DE")
EN_SPELLCHECKER = enchant.Dict("en_US")
def autocorrectWord(word,spellchecker=DE_SPELLCHECKER):
try:
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
except:
return word
def autocorrect():
return lambda string: " ".join([autocorrectWord(s.lower()) for s in string.split()])
"""
def create_lemma_dicts(lemmalist=LEMMAS):
w_dict = {}
lem_dict = {}
for i, line in enumerate(lemmalist):
try:
lem_word_pair = line.split()
if len(lem_word_pair) != 2:
print(line)
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
except:
print(line)
if lemma not in lem_dict:
lem_dict[lemma] = i
if word not in w_dict:
w_dict[word] = lem_dict[lemma]
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
return l_dict, w_dict
lemma_dict, word_dict = create_lemma_dicts()
def lemmatizeWord(word, l_dict=lemma_dict, w_dict=word_dict, n=3):
# mehrmals machen
for i in range(n):
try:
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
except:
print(word)
return word
def build_thesaurus(path2lexicalentries, path2synsets):
lextree = ET.parse(path2lexicalentries, ET.XMLParser(encoding="utf-8"))
syntree = ET.parse(path2synsets, ET.XMLParser(encoding="utf-8"))
lexroot = lextree.getroot()
synroot = syntree.getroot()
thesaurus = []
for r in synroot:
for element in r:
if element.tag == "Synset":
sysnet = []
attrib = element.attrib
id = attrib["id"]
for ro in lexroot:
for elem in ro:
if elem.tag == "LexicalEntry":
subs_dicts = [subentry.attrib for subentry in elem]
# <class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
dic = {k: v for x in subs_dicts for k, v in x.items()} # to one dict
if "synset" in dic.keys():
if dic["synset"] == id:
string = (dic["writtenForm"])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# alle punkte raus
string = re.sub(r'[.]', "", string)
# alles in klammern raus
string = re.sub(r"\((.*)\)", " ", string)
# längeres leerzeichen normalisieren
string = textacy.preprocess.normalize_whitespace(string)
sysnet.append(string.lower().strip())
# nach anzhal der wörter in den strings sortieren
sysnet.sort(key=lambda x: len(x.split()))
if len(sysnet) != 0:
# todo warum sind manche leer?
thesaurus.append(sysnet)
return thesaurus
printlog("Build Thesaurus")
THESAURUS = []
THESAURUS = build_thesaurus(path2lexicalentries=lexicalentries, path2synsets=synsets)
def getFirstSynonym(word, thesaurus=THESAURUS):
if not isinstance(word, str):
return str(word)
word = word.lower()
# durch den thesaurrus iterieren
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
for syn in syn_block:
syn = syn.lower()
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist todo phrasen auch normalisieren
if word == syn:
return syn_block[0]
return str(word) # zur Not das ursrpüngliche Wort zurückgeben
########################## Spellchecking ##########################################
# http://norvig.com/spell-correct.html
# http://wortschatz.uni-leipzig.de/en/download
import re
from collections import Counter
def words(text): return re.findall(r'\w+', text.lower())
printlog("Build Wordlist for Spellchecking")
WORDS = {}
WORDS = Counter(words(open(path2words).read()))
def P(word, N=sum(WORDS.values())):
"Probability of `word`."
return WORDS[word] / N
def correction(word):
"Most probable spelling correction for word."
return max(candidates(word), key=P)
def candidates(word):
"Generate possible spelling corrections for word."
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
def known(words):
"The subset of `words` that appear in the dictionary of WORDS."
return set(w for w in words if w in WORDS)
def edits1(word):
"All edits that are one edit away from `word`."
letters = 'abcdefghijklmnopqrstuvwxyz'
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R) > 1]
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
inserts = [L + c + R for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)
def edits2(word):
"All edits that are two edits away from `word`."
return (e2 for e1 in edits1(word) for e2 in edits1(e1))
"""
DE_SPELLCHECKER = enchant.Dict("de_DE")
EN_SPELLCHECKER = enchant.Dict("en_US")
def autocorrectWord(word, spellchecker=DE_SPELLCHECKER):
try:
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
except:
return word
"""
def autocorrectWord(word):
try:
return correction(word)
except:
return word
##################################################################################################
############# stringcleaning
def stringcleaning(stringstream):
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
for string in stringstream:
string = string.lower()
# fixUnicode
string = textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
# remove_words_containing_topLVL
string = " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w)])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# seperate_words_on_regex:
string = " ".join(re.compile(regex_specialChars).split(string))
# cut_after
word = "gruss"
string = string.rpartition(word)[0] if word in string else string
# lemmatize
string = " ".join([lemmatizeWord(word) for word in string.split()])
# synonyme normalisieren #idee vor oder nach lemmatize?
string = " ".join([getFirstSynonym(word) for word in string.split()])
# autocorrect
string = " ".join([autocorrectWord(word) for word in string.split()])
yield string
def processContentstream(textstream, token_filterlist=None, parser=DE_PARSER):
"""
:param textstream: string-gen
:param funclist: [func]
:param parser: spacy-parser
:return: string-gen
"""
"""
filter_tokens=[
#removeENT(["PERSON"]),
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
#idee rechtschreibkorrektur --> PyEnchant
#idee thesaurus --> WordNet, eigener
remove_words_containing_Numbers(),
removePOS(["PUNCT","SPACE","NUM"]),
removeWords(de_stop_words+custom_words),
remove_long_words(),
remove_short_words(),
remove_first_names(),
keepPOS(["NOUN"]),
]
"""
# pre_parse
textstream = stringcleaning(textstream)
pipe = parser.pipe(textstream)
tokens = []
for doc in pipe:
tokens = [tok for tok in doc]
# in_parse
if token_filterlist is not None:
tokens = filterTokens(tokens, token_filterlist)
yield " ".join([tok.lower_ for tok in tokens])
# yield " ".join(list(set([tok.lower_ for tok in tokens])))
def processDictstream(dictstream, funcdict, parser=DE_PARSER):
"""
:param dictstream: dict-gen
:param funcdict:
clean_in_meta = {
"Solution":funclist,
...
}
:param parser: spacy-parser
:return: dict-gen
"""
for dic in dictstream:
result = {}
for key, value in dic.items():
if key in funcdict:
doc = parser(value)
tokens = [tok for tok in doc]
funclist = funcdict[key]
tokens = filterTokens(tokens, funclist)
result[key] = " ".join([tok.lower_ for tok in tokens])
else:
result[key] = value
yield result
def filterTokens(tokens, funclist):
# in:tokenlist, funclist
# out: tokenlist
for f in funclist:
tokens = list(filter(f, tokens))
return tokens
custom_words = ["geehrt", "dame", "herr", "hilfe", "problem", "lauten", "bedanken", "voraus",
"hallo", "gerne", "freundlich", "fragen", "fehler", "bitten", "ehre", "lieb", "helfen",
"versuchen", "unbestimmt", "woche", "tadelos", "klappen", "mittlerweile", "bekommen",
"erreichbar", "gruss", "auffahren", "vorgang", "hinweis", "institut", "universitaet",
"name", "gruss", "id", "erfolg", "mail","folge",
"nummer", "team", "fakultaet", "email", "absender", "tu", "versenden", "vorname", "message",
"service", "strasse", "prozess", "portal", "raum", "personal", "moeglichkeit", "fremd", "wende",
"rueckfrage", "stehen", "verfuegung",
"funktionieren", "kollege", "pruefen", "hoffen"
]
filter_tokens = [
# removeENT(["PERSON"]),
# idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
keepNouns(),
remove_words_containing_Numbers(),
removePOS(["PUNCT", "SPACE", "NUM"]),
removeWords(de_stop_words + custom_words),
remove_long_words(),
remove_short_words(),
remove_first_names()
]
metaliste = [
"Subject",
"categoryName",
"Solution"
]
clean_in_meta = {
"Solution": [removePOS(["SPACE"])],
"Subject": [removePOS(["SPACE", "PUNCT"])],
"categoryName": [removePOS(["SPACE", "PUNCT"])]
}
"""
pipe=[
##String
fixUnicode(),
replaceHardS(),
resolveAbbrivations(),
remove_words_containing_topLVL(),
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
remove_words_containing_Numbers(),
##spacyParse
removeENT("PERSON"),
keepPOS(["NOUN"]),
#ODER
lemmatize(),
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
# evtl.
spellCorrection(),
keepUniqeTokens(),
]
"""
de_corpus = textacy.Corpus(DE_PARSER)
en_corpus = textacy.Corpus(EN_PARSER)
## add files to textacy-corpus,
printlog("Add texts to textacy-corpus")
de_corpus.add_texts(
processContentstream(csv_to_contentStream(path2de_csv, "Description"), token_filterlist=filter_tokens),
processDictstream(csv_to_metaStream(path2de_csv, metaliste), clean_in_meta)
)
# leere docs aus corpus kicken
de_corpus.remove(lambda doc: len(doc) == 0)
for i in range(20):
printRandomDoc(de_corpus)
#save corpus
corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/"
corpus_name = "de_corpus"
save_corpus(corpus=de_corpus,corpus_path=corpus_path,corpus_name=corpus_name)
#todo das selbe mit en_corpus
end = time.time()
printlog("Time Elapsed Preprocessing:{0} min".format((end - start) / 60))