1184 lines
31 KiB
Python
1184 lines
31 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
print(datetime.now())
|
|
|
|
|
|
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
|
|
#path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
|
|
path2csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
|
|
|
|
path_csv_split = path2csv.split("/")
|
|
print(path_csv_split[len(path_csv_split)-1])
|
|
import time
|
|
|
|
import enchant
|
|
|
|
start = time.time()
|
|
|
|
import logging
|
|
|
|
import csv
|
|
import functools
|
|
import os.path
|
|
import re
|
|
import subprocess
|
|
import time
|
|
import xml.etree.ElementTree as ET
|
|
import sys
|
|
import spacy
|
|
import textacy
|
|
from scipy import *
|
|
from textacy import Vectorizer
|
|
import warnings
|
|
import configparser as ConfigParser
|
|
import sys
|
|
import hunspell
|
|
from postal.parser import parse_address
|
|
|
|
|
|
|
|
csv.field_size_limit(sys.maxsize)
|
|
|
|
#ssh madonna "nohup /usr/bin/python3 -u /home/jannis.grundmann/PycharmProjects/topicModelingTickets/testo.py &> /home/jannis.grundmann/PycharmProjects/topicModelingTickets/printout.log &"
|
|
|
|
|
|
|
|
# todo configuration file
|
|
"""
|
|
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
|
|
|
|
config = ConfigParser.ConfigParser()
|
|
with open(config_ini) as f:
|
|
config.read_file(f)
|
|
"""
|
|
|
|
|
|
logile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
|
|
# config logging
|
|
logging.basicConfig(filename=logile, level=logging.INFO)
|
|
#logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
|
|
|
|
|
|
#thesauruspath = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/openthesaurus.csv"
|
|
#thesauruspath = config.get("filepath","thesauruspath")
|
|
#THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
|
|
|
|
|
# THESAURUS
|
|
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
|
|
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
|
|
|
|
path2words = '/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt'
|
|
|
|
|
|
from langdetect import detect
|
|
|
|
|
|
|
|
DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen
|
|
#EN_PARSER = spacy.load("en")
|
|
|
|
|
|
|
|
|
|
def replaceRockDots():
|
|
return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
|
|
|
|
"""
|
|
de_stop_words= set(
|
|
list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) +
|
|
list(textacy.fileio.read_file_lines("stopwords-de.txt"))
|
|
)
|
|
|
|
|
|
LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
|
|
|
|
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
|
|
"""
|
|
from nltk.corpus import stopwords
|
|
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")))
|
|
de_stop_words = de_stop_words + list(set(stopwords.words('english')))
|
|
#en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS))
|
|
|
|
LEMMAS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
|
|
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames.txt")))
|
|
|
|
NOUNS = list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen2.txt"))
|
|
NOUNS = NOUNS +list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen.txt"))
|
|
NOUNS = list(map(textacy.preprocess.normalize_whitespace, NOUNS))
|
|
|
|
print(de_stop_words[10:30])
|
|
|
|
|
|
print(LEMMAS[10:30])
|
|
print(VORNAMEN[10:30])
|
|
print(NOUNS[10:30])
|
|
|
|
|
|
|
|
|
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
|
|
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
|
|
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
|
|
|
|
|
|
def printlog(string, level="INFO"):
|
|
"""log and prints"""
|
|
print(string)
|
|
if level=="INFO":
|
|
logging.info(string)
|
|
elif level=="DEBUG":
|
|
logging.debug(string)
|
|
elif level == "WARNING":
|
|
logging.warning(string)
|
|
|
|
|
|
printlog(str(datetime.now()))
|
|
printlog("Load functions")
|
|
|
|
def compose(*functions):
|
|
def compose2(f, g):
|
|
return lambda x: f(g(x))
|
|
return functools.reduce(compose2, functions, lambda x: x)
|
|
|
|
def get_calling_function():
|
|
"""finds the calling function in many decent cases.
|
|
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
|
|
"""
|
|
fr = sys._getframe(1) # inspect.stack()[1][0]
|
|
co = fr.f_code
|
|
for get in (
|
|
lambda:fr.f_globals[co.co_name],
|
|
lambda:getattr(fr.f_locals['self'], co.co_name),
|
|
lambda:getattr(fr.f_locals['cls'], co.co_name),
|
|
lambda:fr.f_back.f_locals[co.co_name], # nested
|
|
lambda:fr.f_back.f_locals['func'], # decorators
|
|
lambda:fr.f_back.f_locals['meth'],
|
|
lambda:fr.f_back.f_locals['f'],
|
|
):
|
|
try:
|
|
func = get()
|
|
except (KeyError, AttributeError):
|
|
pass
|
|
else:
|
|
if func.__code__ == co:
|
|
return func
|
|
raise AttributeError("func not found")
|
|
|
|
def printRandomDoc(textacyCorpus):
|
|
import random
|
|
print()
|
|
|
|
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
printlog("Index: {0} ; Text: {1} ; Metadata: {2}\n".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
|
|
print()
|
|
|
|
|
|
|
|
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
|
|
"""
|
|
:param path2csv: string
|
|
:param content_collumn_name: string
|
|
:return: string-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
content_collumn = 0 # standardvalue
|
|
|
|
for i,lst in enumerate(stream):
|
|
if i == 0:
|
|
# look for desired column
|
|
for j,col in enumerate(lst):
|
|
if col == content_collumn_name:
|
|
content_collumn = j
|
|
else:
|
|
yield lst[content_collumn]
|
|
|
|
def csv_to_metaStream(path2csv: str, metalist: [str]):
|
|
"""
|
|
:param path2csv: string
|
|
:param metalist: list of strings
|
|
:return: dict-generator
|
|
"""
|
|
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
|
|
|
|
content_collumn = 0 # standardvalue
|
|
metaindices = []
|
|
metadata_temp = {}
|
|
for i, lst in enumerate(stream):
|
|
if i == 0:
|
|
for j, col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
|
|
for key in metalist:
|
|
if key == col:
|
|
metaindices.append(j)
|
|
metadata_temp = dict(
|
|
zip(metalist, metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
|
|
|
|
else:
|
|
metadata = metadata_temp.copy()
|
|
for key, value in metadata.items():
|
|
metadata[key] = lst[value]
|
|
yield metadata
|
|
|
|
|
|
############# filter tokens
|
|
|
|
def keepPOS(pos_list):
|
|
return lambda tok : tok.pos_ in pos_list
|
|
|
|
def keepNouns(noun_list=NOUNS):
|
|
return lambda tok : tok.lower_ in noun_list
|
|
|
|
|
|
def removePOS(pos_list):
|
|
return lambda tok : tok.pos_ not in pos_list
|
|
|
|
|
|
def removeWords(words, keep=None):
|
|
if hasattr(keep, '__iter__'):
|
|
for k in keep:
|
|
try:
|
|
words.remove(k)
|
|
except ValueError:
|
|
pass
|
|
|
|
return lambda tok : tok.lower_ not in words
|
|
|
|
|
|
def keepENT(ent_list):
|
|
return lambda tok : tok.ent_type_ in ent_list
|
|
|
|
|
|
def removeENT(ent_list):
|
|
return lambda tok: tok.ent_type_ not in ent_list
|
|
|
|
|
|
def remove_words_containing_Numbers():
|
|
return lambda tok: not bool(re.search('\d', tok.lower_))
|
|
|
|
"""
|
|
def remove_words_containing_topLVL():
|
|
return lambda tok: not bool(re.search(regex_topLvl, tok.lower_))
|
|
|
|
|
|
def remove_words_containing_specialCharacters():
|
|
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
|
|
"""
|
|
|
|
def remove_long_words():
|
|
return lambda tok: not len(tok.lower_) < 2
|
|
|
|
def remove_short_words():
|
|
return lambda tok: not len(tok.lower_) > 35
|
|
|
|
def remove_first_names():
|
|
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
|
|
|
|
|
|
|
|
|
|
|
|
############# strings
|
|
|
|
def remove_addresses(string):
|
|
pass #todo
|
|
|
|
|
|
"""
|
|
def stringcleaning(stringstream, funclist):
|
|
for string in stringstream:
|
|
for f in funclist:
|
|
|
|
string = f(string)
|
|
yield string
|
|
|
|
def cut_after(word="gruss"):
|
|
return lambda string: string.rpartition(word)[0] if word in string else string
|
|
|
|
def seperate_words_on_regex(regex=regex_specialChars):
|
|
return lambda string: " ".join(re.compile(regex).split(string))
|
|
|
|
|
|
|
|
def remove_words_containing_topLVL():
|
|
return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ])
|
|
|
|
|
|
def replaceSpecialChars(replace_with=" "):
|
|
return lambda string: re.sub(regex_specialChars, replace_with, string.lower())
|
|
|
|
|
|
def replaceNumbers(replace_with="NUMBER"):
|
|
return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with)
|
|
|
|
|
|
def replacePhonenumbers(replace_with="PHONENUMBER"):
|
|
return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with)
|
|
|
|
|
|
def replaceSharpS(replace_with="ss"):
|
|
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
|
|
|
|
def fixUnicode():
|
|
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
|
|
"""
|
|
|
|
"""
|
|
def lemmatizeWord(word,filepath=LEMMAS):
|
|
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
|
|
if word.lower() == line.split()[1].strip().lower():
|
|
return line.split()[0].strip().lower()
|
|
return word.lower() # falls nix gefunden wurde
|
|
|
|
|
|
def create_lemma_dicts(lemmalist=LEMMAS):
|
|
w_dict = {}
|
|
lem_dict = {}
|
|
|
|
for i, line in enumerate(lemmalist):
|
|
try:
|
|
lem_word_pair = line.split()
|
|
|
|
if len(lem_word_pair) != 2:
|
|
print(line)
|
|
|
|
lemma = lem_word_pair[0].strip().lower()
|
|
|
|
word = lem_word_pair[1].strip().lower()
|
|
except:
|
|
print(line)
|
|
|
|
if lemma not in lem_dict:
|
|
lem_dict[lemma] = i
|
|
|
|
if word not in w_dict:
|
|
w_dict[word] = lem_dict[lemma]
|
|
|
|
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
|
|
|
|
return l_dict,w_dict
|
|
|
|
lemma_dict,word_dict = create_lemma_dicts()
|
|
|
|
|
|
|
|
def lemmatizeWord(word,l_dict=lemma_dict,w_dict=word_dict):
|
|
#mehrmals machen
|
|
for i in range(3):
|
|
try:
|
|
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
|
|
except:
|
|
print(word)
|
|
return word
|
|
|
|
def lemmatize():
|
|
return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc])
|
|
|
|
def lemmatize():
|
|
return lambda string: " ".join([lemmatizeWord(s.lower()) for s in string.split()])
|
|
|
|
DE_SPELLCHECKER = enchant.Dict("de_DE")
|
|
EN_SPELLCHECKER = enchant.Dict("en_US")
|
|
|
|
def autocorrectWord(word,spellchecker=DE_SPELLCHECKER):
|
|
|
|
try:
|
|
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
|
|
except:
|
|
return word
|
|
|
|
|
|
|
|
def autocorrect():
|
|
return lambda string: " ".join([autocorrectWord(s.lower()) for s in string.split()])
|
|
"""
|
|
|
|
|
|
def create_lemma_dicts(lemmalist=LEMMAS):
|
|
w_dict = {}
|
|
lem_dict = {}
|
|
|
|
for i, line in enumerate(lemmalist):
|
|
try:
|
|
lem_word_pair = line.split()
|
|
|
|
if len(lem_word_pair) != 2:
|
|
print(line)
|
|
|
|
lemma = lem_word_pair[0].strip().lower()
|
|
|
|
word = lem_word_pair[1].strip().lower()
|
|
except:
|
|
print(line)
|
|
|
|
if lemma not in lem_dict:
|
|
lem_dict[lemma] = i
|
|
|
|
if word not in w_dict:
|
|
w_dict[word] = lem_dict[lemma]
|
|
|
|
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
|
|
|
|
return l_dict, w_dict
|
|
lemma_dict, word_dict = create_lemma_dicts()
|
|
|
|
def lemmatizeWord(word, l_dict=lemma_dict, w_dict=word_dict, n=3):
|
|
# mehrmals machen
|
|
for i in range(n):
|
|
try:
|
|
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
|
|
except:
|
|
print(word)
|
|
return word
|
|
|
|
def build_thesaurus(path2lexicalentries, path2synsets):
|
|
|
|
|
|
|
|
lextree = ET.parse(path2lexicalentries, ET.XMLParser(encoding="utf-8"))
|
|
syntree = ET.parse(path2synsets, ET.XMLParser(encoding="utf-8"))
|
|
|
|
lexroot = lextree.getroot()
|
|
synroot = syntree.getroot()
|
|
|
|
thesaurus=[]
|
|
|
|
for r in synroot:
|
|
for element in r:
|
|
|
|
if element.tag == "Synset":
|
|
sysnet = []
|
|
attrib = element.attrib
|
|
id = attrib["id"]
|
|
|
|
|
|
for ro in lexroot:
|
|
for elem in ro:
|
|
if elem.tag == "LexicalEntry":
|
|
subs_dicts = [subentry.attrib for subentry in elem]
|
|
#<class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
|
|
|
|
dic = {k:v for x in subs_dicts for k,v in x.items()} # to one dict
|
|
if "synset" in dic.keys():
|
|
if dic["synset"] == id:
|
|
|
|
string = (dic["writtenForm"])
|
|
|
|
# replaceRockDots
|
|
string = re.sub(r'[ß]', "ss", string)
|
|
string = re.sub(r'[ö]', "oe", string)
|
|
string = re.sub(r'[ü]', "ue", string)
|
|
string = re.sub(r'[ä]', "ae", string)
|
|
|
|
|
|
# alle punkte raus
|
|
string = re.sub(r'[.]', "", string)
|
|
|
|
# alles in klammern raus
|
|
string = re.sub(r"\((.*)\)", " ", string)
|
|
|
|
# längeres leerzeichen normalisieren
|
|
string = textacy.preprocess.normalize_whitespace(string)
|
|
|
|
|
|
sysnet.append(string.lower().strip())
|
|
|
|
# nach anzhal der wörter in den strings sortieren
|
|
sysnet.sort(key=lambda x: len(x.split()))
|
|
if len(sysnet) != 0:
|
|
#todo warum sind manche leer?
|
|
thesaurus.append(sysnet)
|
|
return thesaurus
|
|
|
|
|
|
|
|
|
|
THESAURUS=[]
|
|
THESAURUS=build_thesaurus(path2lexicalentries=lexicalentries,path2synsets=synsets)
|
|
|
|
def getFirstSynonym(word, thesaurus=THESAURUS):
|
|
if not isinstance(word, str):
|
|
return str(word)
|
|
|
|
word = word.lower()
|
|
|
|
# durch den thesaurrus iterieren
|
|
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
|
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist todo phrasen auch normalisieren
|
|
if word == syn:
|
|
return syn_block[0]
|
|
|
|
return str(word) # zur Not das ursrpüngliche Wort zurückgeben
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
########################## Spellchecking ##########################################
|
|
|
|
#http://norvig.com/spell-correct.html
|
|
|
|
#http://wortschatz.uni-leipzig.de/en/download
|
|
|
|
import re
|
|
from collections import Counter
|
|
|
|
|
|
|
|
def words(text): return re.findall(r'\w+', text.lower())
|
|
|
|
|
|
WORDS={}
|
|
WORDS = Counter(words(open(path2words).read()))
|
|
|
|
def P(word, N=sum(WORDS.values())):
|
|
"Probability of `word`."
|
|
return WORDS[word] / N
|
|
|
|
def correction(word):
|
|
"Most probable spelling correction for word."
|
|
return max(candidates(word), key=P)
|
|
|
|
def candidates(word):
|
|
"Generate possible spelling corrections for word."
|
|
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
|
|
|
|
def known(words):
|
|
"The subset of `words` that appear in the dictionary of WORDS."
|
|
return set(w for w in words if w in WORDS)
|
|
|
|
def edits1(word):
|
|
"All edits that are one edit away from `word`."
|
|
letters = 'abcdefghijklmnopqrstuvwxyz'
|
|
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
|
deletes = [L + R[1:] for L, R in splits if R]
|
|
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
|
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
|
inserts = [L + c + R for L, R in splits for c in letters]
|
|
return set(deletes + transposes + replaces + inserts)
|
|
|
|
def edits2(word):
|
|
"All edits that are two edits away from `word`."
|
|
return (e2 for e1 in edits1(word) for e2 in edits1(e1))
|
|
"""
|
|
DE_SPELLCHECKER = enchant.Dict("de_DE")
|
|
EN_SPELLCHECKER = enchant.Dict("en_US")
|
|
|
|
def autocorrectWord(word, spellchecker=DE_SPELLCHECKER):
|
|
try:
|
|
return spellchecker.suggest(word)[0] if not spellchecker.check(word) else word
|
|
except:
|
|
return word
|
|
"""
|
|
|
|
def autocorrectWord(word):
|
|
try:
|
|
return correction(word)
|
|
except:
|
|
return word
|
|
|
|
|
|
##################################################################################################
|
|
|
|
|
|
|
|
############# stringcleaning
|
|
|
|
def stringcleaning(stringstream):
|
|
|
|
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
|
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
|
|
|
|
|
|
for string in stringstream:
|
|
|
|
string = string.lower()
|
|
|
|
# fixUnicode
|
|
string = textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
|
|
|
|
# remove_words_containing_topLVL
|
|
string = " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w)])
|
|
|
|
# replaceRockDots
|
|
string = re.sub(r'[ß]', "ss", string)
|
|
string = re.sub(r'[ö]', "oe", string)
|
|
string = re.sub(r'[ü]', "ue", string)
|
|
string = re.sub(r'[ä]', "ae", string)
|
|
|
|
# seperate_words_on_regex:
|
|
string = " ".join(re.compile(regex_specialChars).split(string))
|
|
|
|
# cut_after
|
|
word = "gruss"
|
|
string = string.rpartition(word)[0] if word in string else string
|
|
|
|
# lemmatize
|
|
string = " ".join([lemmatizeWord(word) for word in string.split()])
|
|
|
|
# synonyme normalisieren #idee vor oder nach lemmatize?
|
|
string = " ".join([getFirstSynonym(word) for word in string.split()])
|
|
|
|
# autocorrect
|
|
string = " ".join([autocorrectWord(word) for word in string.split()])
|
|
|
|
yield string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def processContentstream(textstream, token_filterlist=None, parser=DE_PARSER):
|
|
"""
|
|
:param textstream: string-gen
|
|
:param funclist: [func]
|
|
:param parser: spacy-parser
|
|
:return: string-gen
|
|
"""
|
|
|
|
"""
|
|
filter_tokens=[
|
|
#removeENT(["PERSON"]),
|
|
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
|
#idee rechtschreibkorrektur --> PyEnchant
|
|
#idee thesaurus --> WordNet, eigener
|
|
|
|
remove_words_containing_Numbers(),
|
|
|
|
removePOS(["PUNCT","SPACE","NUM"]),
|
|
|
|
removeWords(de_stop_words+custom_words),
|
|
|
|
remove_long_words(),
|
|
remove_short_words(),
|
|
remove_first_names(),
|
|
|
|
keepPOS(["NOUN"]),
|
|
|
|
]
|
|
"""
|
|
|
|
|
|
|
|
#pre_parse
|
|
textstream = stringcleaning(textstream)
|
|
|
|
pipe = parser.pipe(textstream)
|
|
|
|
tokens=[]
|
|
for doc in pipe:
|
|
|
|
tokens = [tok for tok in doc]
|
|
#print(" ".join([tok.lower_ for tok in tokens]))
|
|
|
|
# in_parse
|
|
if token_filterlist is not None:
|
|
tokens = filterTokens(tokens, token_filterlist)
|
|
|
|
|
|
yield " ".join([tok.lower_ for tok in tokens])
|
|
#yield " ".join(list(set([tok.lower_ for tok in tokens])))
|
|
|
|
|
|
|
|
def processDictstream(dictstream, funcdict, parser=DE_PARSER):
|
|
"""
|
|
|
|
:param dictstream: dict-gen
|
|
:param funcdict:
|
|
clean_in_meta = {
|
|
"Solution":funclist,
|
|
...
|
|
}
|
|
|
|
:param parser: spacy-parser
|
|
:return: dict-gen
|
|
"""
|
|
for dic in dictstream:
|
|
result = {}
|
|
for key, value in dic.items():
|
|
|
|
if key in funcdict:
|
|
|
|
doc = parser(value)
|
|
tokens = [tok for tok in doc]
|
|
funclist = funcdict[key]
|
|
|
|
tokens = filterTokens(tokens, funclist)
|
|
|
|
|
|
result[key] = " ".join([tok.lower_ for tok in tokens])
|
|
|
|
|
|
else:
|
|
result[key] = value
|
|
yield result
|
|
|
|
def filterTokens(tokens, funclist):
|
|
# in:tokenlist, funclist
|
|
# out: tokenlist
|
|
for f in funclist:
|
|
|
|
tokens = list(filter(f, tokens))
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","voraus",
|
|
"hallo","gerne","freundlich","fragen","fehler","bitten","ehre", "lieb","helfen"
|
|
"versuchen","unbestimmt","woche","tadelos", "klappen" ,"mittlerweile", "bekommen","erreichbar","gruss",
|
|
"auffahren","vorgang","hinweis","institut","universitaet","name","gruss","id","erfolg","mail","folge",
|
|
"nummer","team","fakultaet","email","absender","tu","versenden","vorname","message",
|
|
"service","strasse","prozess","portal","raum","personal","moeglichkeit","fremd","wende","rueckfrage", "stehen", "verfuegung"
|
|
"funktionieren","kollege", "pruefen","hoffen"
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filter_tokens=[
|
|
#removeENT(["PERSON"]),
|
|
#idee addressen enfernen #bisher mit cut_after("gruss") --> postal.parser
|
|
|
|
keepNouns(),
|
|
|
|
remove_words_containing_Numbers(),
|
|
|
|
removePOS(["PUNCT","SPACE","NUM"]),
|
|
|
|
removeWords(de_stop_words+custom_words),
|
|
|
|
remove_long_words(),
|
|
remove_short_words(),
|
|
remove_first_names()
|
|
|
|
#keepPOS(["NOUN"]),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
metaliste = [
|
|
"Subject",
|
|
"categoryName",
|
|
"Solution"
|
|
]
|
|
|
|
clean_in_meta = {
|
|
"Solution":[removePOS(["SPACE"])],
|
|
"Subject":[removePOS(["SPACE","PUNCT"])],
|
|
"categoryName": [removePOS(["SPACE", "PUNCT"])]
|
|
}
|
|
|
|
|
|
|
|
"""
|
|
pipe=[
|
|
|
|
##String
|
|
|
|
fixUnicode(),
|
|
replaceHardS(),
|
|
resolveAbbrivations(),
|
|
|
|
remove_words_containing_topLVL(),
|
|
|
|
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
|
|
|
|
remove_words_containing_Numbers(),
|
|
|
|
|
|
|
|
##spacyParse
|
|
|
|
removeENT("PERSON"),
|
|
keepPOS(["NOUN"]),
|
|
|
|
#ODER
|
|
|
|
lemmatize(),
|
|
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
|
|
|
|
|
|
# evtl.
|
|
spellCorrection(),
|
|
keepUniqeTokens(),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
de_corpus = textacy.Corpus(DE_PARSER)
|
|
#en_corpus = textacy.Corpus(EN_PARSER)
|
|
|
|
|
|
|
|
## add files to textacy-corpus,
|
|
printlog("add texts to textacy-corpus")
|
|
de_corpus.add_texts(
|
|
processContentstream(csv_to_contentStream(path2csv,"Description"), token_filterlist=filter_tokens),
|
|
processDictstream(csv_to_metaStream(path2csv,metaliste),clean_in_meta)
|
|
)
|
|
|
|
|
|
# leere docs aus corpus kicken
|
|
de_corpus.remove(lambda doc: len(doc)==0)
|
|
|
|
|
|
for i in range(10):
|
|
printRandomDoc(de_corpus)
|
|
|
|
|
|
|
|
|
|
end = time.time()
|
|
printlog("Time Elapsed Preprocessing:{0} min".format((end - start)/60))
|
|
|
|
|
|
|
|
def printvecotorization(ngrams = 1,min_df = 1,max_df = 1.0,weighting ='tf',named_entities=True):
|
|
|
|
printlog(str("ngrams: {0}".format(ngrams)))
|
|
printlog(str("min_df: {0}".format(min_df)))
|
|
printlog(str("max_df: {0}".format(max_df)))
|
|
printlog(str("named_entities: {0}".format(named_entities)))
|
|
|
|
|
|
|
|
#printlog("vectorize corpus...")
|
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
|
|
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=named_entities, as_strings=True) for doc in de_corpus)
|
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
|
id2term = vectorizer.__getattribute__("id_to_term")
|
|
|
|
|
|
for t in terms_list:
|
|
print(t)
|
|
printlog("doc_term_matrix: {0}".format(doc_term_matrix))
|
|
printlog("id2term: {0}".format(id2term))
|
|
|
|
|
|
|
|
# todo gescheites tf(-idf) maß finden #idee: tf wird bei token-set immer = 1 sein
|
|
ngrams = 1
|
|
min_df = 1
|
|
max_df = 1.0
|
|
weighting = 'tf'
|
|
# weighting ='tfidf'
|
|
named_entities = False
|
|
|
|
printvecotorization(ngrams=1,min_df=1,max_df=1.0,weighting=weighting)
|
|
printvecotorization(ngrams=1,min_df=1,max_df=0.5,weighting=weighting)
|
|
printvecotorization(ngrams=1,min_df=1,max_df=0.8,weighting=weighting)
|
|
|
|
|
|
printvecotorization(ngrams=(1,2),min_df=1,max_df=1.0,weighting=weighting)
|
|
printvecotorization(ngrams=(1,2),min_df=1,max_df=0.5,weighting=weighting)
|
|
printvecotorization(ngrams=(1,2),min_df=1,max_df=0.8,weighting=weighting)
|
|
|
|
|
|
|
|
"""
|
|
corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/"
|
|
corpus_name = "de_corpus"
|
|
corpus_compression = 'gzip'
|
|
de_corpus.save(corpus_path, name=corpus_name, compression=corpus_compression)
|
|
de_corpus = textacy.Corpus.load(corpus_path, name=corpus_name, compression=corpus_compression)
|
|
"""
|
|
|
|
# build citionary of ticketcategories
|
|
labelist = []
|
|
|
|
for texdoc in de_corpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
|
|
labelist.append(texdoc.metadata["categoryName"])
|
|
|
|
|
|
LABELDICT = {k: v for v, k in enumerate(labelist)}
|
|
|
|
printlog(str("LABELDICT: {0}".format(LABELDICT)))
|
|
|
|
|
|
def topicModeling(ngrams,min_df,max_df,topicModel = 'lda',n_topics = len(LABELDICT),named_entities=False,corpus=de_corpus):
|
|
|
|
|
|
printlog("############################################ Topic Modeling {0} #############################################".format(topicModel))
|
|
print("\n\n")
|
|
printlog(str("ngrams: {0}".format(ngrams)))
|
|
printlog(str("min_df: {0}".format(min_df)))
|
|
printlog(str("max_df: {0}".format(max_df)))
|
|
printlog(str("n_topics: {0}".format(n_topics)))
|
|
printlog(str("named_entities: {0}".format(named_entities)))
|
|
|
|
|
|
start = time.time()
|
|
|
|
top_topic_words = 10
|
|
top_document_labels_per_topic = 5
|
|
|
|
|
|
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
|
|
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
|
|
|
####################'####################
|
|
|
|
|
|
#printlog("vectorize corpus...")
|
|
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
|
|
|
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=named_entities, as_strings=True) for doc in corpus)
|
|
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
|
id2term = vectorizer.__getattribute__("id_to_term")
|
|
|
|
|
|
#printlog("terms_list: {0}".format(list(terms_list)))
|
|
#printlog("doc_term_matrix: {0}".format(doc_term_matrix))
|
|
|
|
|
|
|
|
##################### LSA, LDA, NMF Topic Modeling via Textacy ##############################################
|
|
|
|
# Initialize and train a topic model
|
|
#printlog("Initialize and train a topic model..")
|
|
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
|
|
model.fit(doc_term_matrix)
|
|
|
|
#Transform the corpus and interpret our model:
|
|
#printlog("Transform the corpus and interpret our model..")
|
|
doc_topic_matrix = model.transform(doc_term_matrix)
|
|
print()
|
|
|
|
|
|
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words):
|
|
printlog('topic {0}: {1}'.format(topic_idx, " ".join(top_terms)))
|
|
|
|
|
|
print()
|
|
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
|
printlog(topic_idx)
|
|
for j in top_docs:
|
|
printlog(corpus[j].metadata['categoryName'])
|
|
print()
|
|
|
|
#####################################################################################################################
|
|
print()
|
|
print()
|
|
|
|
|
|
|
|
end = time.time()
|
|
printlog("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start)/60,topicModel))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#no_below = 20
|
|
#no_above = 0.5
|
|
|
|
|
|
#n_topics = len(LABELDICT)#len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
|
|
|
|
|
|
|
"""
|
|
topicModeling(ngrams = 1,
|
|
min_df = 1,
|
|
max_df = 1.0,
|
|
topicModel = 'lda',
|
|
n_topics = len(LABELDICT),
|
|
corpus=de_corpus)
|
|
|
|
topicModeling(ngrams = 1,
|
|
min_df = 0.1,
|
|
max_df = 0.6,
|
|
topicModel = 'lda',
|
|
n_topics = len(LABELDICT),
|
|
corpus=de_corpus)
|
|
|
|
topicModeling(ngrams = (1,2),
|
|
min_df = 1,
|
|
max_df = 1.0,
|
|
topicModel = 'lda',
|
|
n_topics = len(LABELDICT),
|
|
corpus=de_corpus)
|
|
|
|
topicModeling(ngrams = (1,2),
|
|
min_df = 0.1,
|
|
max_df = 0.6,
|
|
topicModel = 'lda',
|
|
n_topics = len(LABELDICT),
|
|
corpus=de_corpus)
|
|
|
|
topicModeling(ngrams = (1,2),
|
|
min_df = 0.2,
|
|
max_df = 0.8,
|
|
topicModel = 'lda',
|
|
n_topics = 20,
|
|
corpus=de_corpus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##################### LLDA Topic Modeling via JGibbsLabledLDA ##############################################
|
|
|
|
|
|
top_topic_words = 10
|
|
|
|
|
|
print("\n\n")
|
|
start = time.time()
|
|
|
|
n_topics = len(LABELDICT) #len(set(ticketcorpus[0].metadata.keys()))+1 #+1 wegen einem default-topic
|
|
|
|
|
|
# build citionary of ticketcategories
|
|
labelist = []
|
|
|
|
for texdoc in de_corpus.get(lambda texdoc : texdoc.metadata["categoryName"] not in labelist):
|
|
labelist.append(texdoc.metadata["categoryName"])
|
|
|
|
|
|
LABELDICT = {k: v for v, k in enumerate(labelist)}
|
|
print(LABELDICT)
|
|
|
|
|
|
|
|
def label2ID(label,labeldict=LABELDICT):
|
|
return labeldict.get(label,len(labeldict))
|
|
|
|
def generate_labled_lines(textacyCorpus):
|
|
for doc in textacyCorpus:
|
|
# generate [topic1, topic2....] tok1 tok2 tok3 out of corpus
|
|
yield "[" + str(label2ID(doc.metadata["categoryName"])) + "] " + doc.text
|
|
|
|
|
|
|
|
|
|
|
|
jgibbsLLDA_root = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/java_LabledLDA/"
|
|
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
|
|
|
|
|
#create file
|
|
textacy.fileio.write_file_lines(generate_labled_lines(de_corpus), filepath=LLDA_filepath)
|
|
|
|
#todfo ticket drucken
|
|
# wait for file to exist
|
|
while not os.path.exists(LLDA_filepath):
|
|
time.sleep(1)
|
|
|
|
print("\n\n")
|
|
printlog("start LLDA:")
|
|
#run JGibsslda file
|
|
FNULL = open(os.devnull, 'w') # supress output
|
|
subprocess.call(["java",
|
|
"-cp", "{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(jgibbsLLDA_root),
|
|
"jgibblda.LDA",
|
|
"-est",
|
|
"-dir", "{0}models/tickets".format(jgibbsLLDA_root),
|
|
"-dfile","tickets.gz",
|
|
"-twords",str(top_topic_words),
|
|
"-ntopics", str(n_topics)], stdout = FNULL)
|
|
|
|
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
|
|
|
#twords
|
|
subprocess.call(["gzip",
|
|
"-dc",
|
|
"{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)])
|
|
#####################################################################################################################
|
|
print()
|
|
print()
|
|
|
|
end = time.time()
|
|
printlog("\n\n\nTime Elapsed Topic Modeling JGibbsLLDA:{0} min\n\n".format((end - start)/60))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|