topicModelingTickets/preprocessing.py

262 lines
6.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
import csv
import random
import re
import spacy
import textacy
import sys
"""
import keras
import numpy as np
from keras.layers import Dense, SimpleRNN, LSTM, TimeDistributed, Dropout
from keras.models import Sequential
import keras.backend as K
"""
csv.field_size_limit(sys.maxsize)
def printRandomDoc(textacyCorpus):
print()
print("len(textacyCorpus) = %i" % len(textacyCorpus))
randIndex = int((len(textacyCorpus) - 1) * random.random())
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
print()
def getFirstSynonym(word, thesaurus_gen):
word = word.lower()
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
# durch den thesaurrus iterieren
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
# durch den synonymblock iterieren
for syn in syn_block:
syn = syn.lower().split(" ") # aus synonym mach liste (um evtl. sätze zu identifieziren)
# falls das wort in dem synonym enthalten ist (also == einem Wort in der liste ist)
if word in syn:
# Hauptform suchen
if "auptform" in syn:
# nicht ausgeben, falls es in Klammern steht
for w in syn:
if not re.match(r'\([^)]+\)', w):
return w
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
if len(syn) == 1:
w = syn[0]
if not re.match(r'\([^)]+\)', w):
return w
return word # zur Not die eingabe ausgeben
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False):
import re
# use preprocessing
if customPreprocessing is not None:
string = customPreprocessing(string)
if custom_stopwords is not None:
custom_stopwords = custom_stopwords
else:
custom_stopwords = []
if custom_words is not None:
custom_words = custom_words
else:
custom_words = []
if custom_symbols is not None:
custom_symbols = custom_symbols
else:
custom_symbols = []
# custom stoplist
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
stop_words = __import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS
stoplist =list(stop_words) + custom_stopwords
# List of symbols we don't care about either
symbols = ["-----","---","...","","",".","-","<",">",",","?","!","..","nt","n't","|","||",";",":","","s","'s",".","(",")","[","]","#"] + custom_symbols
# get rid of newlines
string = string.strip().replace("\n", " ").replace("\r", " ")
# replace twitter
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
string = mentionFinder.sub("MENTION", string)
# replace emails
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
string = emailFinder.sub("EMAIL", string)
# replace urls
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
string = urlFinder.sub("URL", string)
# replace HTML symbols
string = string.replace("&amp;", "and").replace("&gt;", ">").replace("&lt;", "<")
# parse with spaCy
spacy_doc = PARSER(string)
tokens = []
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
added_POS = ["NOUN", "NUM" ]#,"VERB","ADJ"] #IDEE NUM mit in den Corpus aufnehmen, aber fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
# append Tokens to a list
for tok in spacy_doc:
if tok.pos_ in added_POS:
if lemmatize:
tokens.append(tok.lemma_.lower().strip())
else:
tokens.append(tok.text.lower().strip())
# add entities
if tok.ent_type_ in added_entities:
tokens.append(tok.text.lower())
# remove stopwords
tokens = [tok for tok in tokens if tok not in stoplist]
# remove symbols
tokens = [tok for tok in tokens if tok not in symbols]
# remove custom_words
tokens = [tok for tok in tokens if tok not in custom_words]
# remove single characters
tokens = [tok for tok in tokens if len(tok)>1]
# remove large strings of whitespace
while "" in tokens:
tokens.remove("")
while " " in tokens:
tokens.remove(" ")
while "\n" in tokens:
tokens.remove("\n")
while "\n\n" in tokens:
tokens.remove("\n\n")
#TODO hier thsaurus einbinden?
return " ".join(tokens)
def generateTextfromXML(path2xml, clean=True, field='Beschreibung'):
import xml.etree.ElementTree as ET
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
for subject in root.iter(field):
if clean:
yield cleanText(subject.text)
else:
yield subject.text
def generateMetadatafromXML(path2xml, keys=["Loesung","Kategorie","Zusammenfassung"]):
import xml.etree.ElementTree as ET
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
root = tree.getroot()
metadata = dict.fromkeys(keys)
for ticket in root.findall('ticket'):
for key in metadata:
metadata[key] = ticket.find(key).text #TODO hier thsaurus einbinden?
yield metadata
####################'####################'####################'####################'####################'##############
DATAPATH = "ticketSamples.xml"
DATAPATH_thesaurus = "openthesaurus.csv"
LANGUAGE = 'de'
####################'####################'####################'####################'####################'##############
PARSER = spacy.load(LANGUAGE)
THESAURUS_gen = textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";") # generator [[a,b,c,..],[a,b,c,..],...]
## files to textacy-corpus
textacyCorpus = textacy.Corpus(PARSER)
print("add texts to textacy-corpus...")
textacyCorpus.add_texts(texts=generateTextfromXML(DATAPATH), metadatas=generateMetadatafromXML(DATAPATH))
#printRandomDoc(textacyCorpus)
print(textacyCorpus[len(textacyCorpus)-1].text)