722 lines
20 KiB
Python
722 lines
20 KiB
Python
# -*- coding: utf-8 -*-
|
||
|
||
from datetime import datetime
|
||
import draw
|
||
import draw1
|
||
import time
|
||
import numpy as np
|
||
import operator
|
||
|
||
import csv
|
||
import sys
|
||
import json
|
||
import os.path
|
||
import subprocess
|
||
from textacy import Vectorizer, viz
|
||
|
||
from miscellaneous import *
|
||
import textacy
|
||
from scipy import *
|
||
|
||
import os
|
||
|
||
csv.field_size_limit(sys.maxsize)
|
||
FILEPATH = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||
|
||
|
||
# load config
|
||
config_ini = FILEPATH + "config.ini"
|
||
|
||
config = ConfigParser.ConfigParser()
|
||
with open(config_ini) as f:
|
||
config.read_file(f)
|
||
|
||
|
||
def textacyTopicModeling(corpus,
|
||
n_topics = 15, top_topic_words = 7, top_document_labels_per_topic = 5,
|
||
ngrams = 1, min_df=1, max_df=0.9,
|
||
topicModel='lda'):
|
||
|
||
|
||
|
||
|
||
n_terms = int(n_topics * top_topic_words)
|
||
sort_terms_by = 'seriation' # 'seriation', 'weight', 'index', 'alphabetical'
|
||
rank_terms_by = 'corpus' # 'corpus', 'topic'
|
||
|
||
|
||
|
||
logprint("#### Topic Modeling {0}".format(topicModel))
|
||
logprint(str("ngrams: {0}".format(ngrams)))
|
||
logprint(str("min_df: {0}".format(min_df)))
|
||
logprint(str("max_df: {0}".format(max_df)))
|
||
logprint(str("n_topics: {0}".format(n_topics)))
|
||
logprint("\n")
|
||
|
||
start = time.time()
|
||
|
||
# http://textacy.readthedocs.io/en/latest/api_reference.html#textacy.tm.topic_model.TopicModel.get_doc_topic_matrix
|
||
weighting = ('tf' if topicModel == 'lda' else 'tfidf')
|
||
|
||
|
||
|
||
|
||
|
||
|
||
###### vectorize corpi
|
||
|
||
vectorizer = Vectorizer(weighting=weighting, min_df=min_df, max_df=max_df)
|
||
|
||
terms_list = (doc.to_terms_list(ngrams=ngrams, named_entities=False, as_strings=True) for doc in corpus)
|
||
doc_term_matrix = vectorizer.fit_transform(terms_list)
|
||
id2term = vectorizer.__getattribute__("id_to_term")
|
||
|
||
|
||
|
||
####### Initialize and train a topic model
|
||
|
||
model = textacy.tm.TopicModel(topicModel, n_topics=n_topics)
|
||
|
||
model.fit(doc_term_matrix)
|
||
|
||
doc_topic_matrix = model.transform(doc_term_matrix)
|
||
|
||
for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=top_topic_words, weights=True):
|
||
logprint('{0}: {1}'.format(topic_idx, str(top_terms)))
|
||
|
||
for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, top_n=top_document_labels_per_topic):
|
||
logprint(topic_idx)
|
||
for j in top_docs:
|
||
logprint(corpus[j].metadata['categoryName'])
|
||
|
||
|
||
|
||
|
||
####################### termite plot ###################################################################
|
||
|
||
grams_label = "uni" if ngrams == 1 else "bi"
|
||
|
||
draw1.termite_plot(model,doc_term_matrix, vectorizer.id_to_term,
|
||
|
||
n_terms=n_terms,
|
||
sort_terms_by=sort_terms_by,
|
||
rank_terms_by=rank_terms_by + '_weight',
|
||
|
||
save=FILEPATH + "results/{}_{}_{}_{}_{}_{}.png".format(grams_label, topicModel, n_topics,
|
||
n_terms, sort_terms_by, rank_terms_by))
|
||
|
||
end = time.time()
|
||
logprint("\n\n\nTime Elapsed Topic Modeling with {1}:{0} min\n\n".format((end - start) / 60, topicModel))
|
||
|
||
|
||
def jgibbsLLDA(labeldict,line_gen,path2save_results, top_topic_words=7):
|
||
|
||
labeldict_rev = {v: k for k, v in labeldict.items()}
|
||
|
||
jgibbsLLDA_root = FILEPATH + "java_LabledLDA/"
|
||
LLDA_filepath = "{0}models/tickets/tickets.gz".format(jgibbsLLDA_root)
|
||
|
||
|
||
textacy.fileio.write_file_lines(line_gen, filepath=LLDA_filepath)
|
||
|
||
|
||
|
||
|
||
# wait for file to exist
|
||
while not os.path.exists(LLDA_filepath):
|
||
time.sleep(1)
|
||
|
||
|
||
|
||
# run JGibbsLLDA file
|
||
|
||
n_topics = len(labeldict) #+1 #default-topic
|
||
|
||
FNULL = open(os.devnull, 'w') # supress output
|
||
cmd_jgibbs_java = ["java", "-cp",
|
||
"{0}lib/trove-3.0.3.jar:{0}lib/args4j-2.0.6.jar:{0}out/production/LabledLDA/".format(
|
||
jgibbsLLDA_root),
|
||
"jgibblda.LDA", "-est", "-dir", "{0}models/tickets".format(jgibbsLLDA_root), "-dfile",
|
||
"tickets.gz",
|
||
"-twords", str(top_topic_words), "-ntopics", str(n_topics)]
|
||
subprocess.call(cmd_jgibbs_java, stdout=FNULL)
|
||
|
||
|
||
# ANMERKUNG: Dateien sind versteckt. zu finden in models/
|
||
cmd_gzip = ["gzip", "-dc", "{0}/models/tickets/.twords.gz".format(jgibbsLLDA_root)]
|
||
output = subprocess.check_output(cmd_gzip).decode("utf-8")
|
||
|
||
|
||
topic_regex = re.compile(r'Topic [0-9]*')
|
||
|
||
#####################################
|
||
# todo save results in file aufgrund von results
|
||
result = []
|
||
|
||
for line in output.splitlines():
|
||
findall = topic_regex.findall(line)
|
||
if len(findall) != 0:
|
||
try:
|
||
index = int(findall[0].split()[1])
|
||
result.append("Topic {} {}:".format(index, labeldict_rev[index]))
|
||
|
||
except:
|
||
result.append(line)
|
||
|
||
else:
|
||
result.append(line)
|
||
|
||
textacy.fileio.write_file_lines(result, path2save_results+".txt")
|
||
#####################################
|
||
|
||
results = []
|
||
res_dict = {}
|
||
count =0
|
||
for line in output.splitlines():
|
||
|
||
findall = topic_regex.findall(line)
|
||
|
||
if len(findall) != 0:
|
||
|
||
if len(res_dict) != 0:
|
||
results.append(res_dict) #vorheriges an die liste ran (ist ja dann fertig)
|
||
|
||
index = int(findall[0].split()[1])
|
||
|
||
res_dict = {index : str(labeldict_rev[index]) }
|
||
|
||
else:
|
||
splitted = line.split()
|
||
res_dict[splitted[0]] = float(splitted[1])
|
||
|
||
if len(res_dict) != 0:
|
||
results.append(res_dict) # letzes an die liste ran
|
||
|
||
|
||
# every term in the resulsts to a list
|
||
|
||
terms=[]
|
||
for res in results:
|
||
for key,value in res.items():
|
||
if not isinstance(key, int) and not key in terms:
|
||
terms.append(key)
|
||
|
||
term2id = {t:i for i,t in enumerate(terms)} #and to dict
|
||
|
||
################# termite plot #####################################################################
|
||
topic_labels = list(range(len(labeldict)))
|
||
term_labels = list(range(len(term2id))) #tuple([key for key in term2id.keys()])
|
||
|
||
|
||
term_topic_weights = np.zeros((len(term2id),len(topic_labels)))
|
||
|
||
for i,res in enumerate(results):
|
||
|
||
for key,value in res.items():
|
||
|
||
if not isinstance(key, int):
|
||
term_topic_weights[term2id[key]][i] = value
|
||
term_labels[term2id[key]] = key
|
||
else:
|
||
topic_labels[i] = labeldict_rev[key]
|
||
|
||
draw.draw_termite(
|
||
term_topic_weights, topic_labels, term_labels, save=path2save_results+".png")
|
||
|
||
draw.draw_termite(
|
||
term_topic_weights, topic_labels, term_labels, save=path2save_results+"_spaced.png",pow_x=0.78,pow_y=0.87)
|
||
|
||
# save labeldict
|
||
labeldict_path = path2save_results + "_labeldict.json"
|
||
with open(labeldict_path, 'w') as file:
|
||
file.write(json.dumps(labeldict))
|
||
|
||
|
||
def jgibbsLLDA_category(corpus, path2save_results, top_topic_words=7):
|
||
|
||
start = time.time()
|
||
logprint("")
|
||
logprint("start Category-LLDA:")
|
||
|
||
|
||
# build dictionary of ticketcategories
|
||
labelist = []
|
||
for doc in corpus:
|
||
|
||
category = normalize(doc.metadata["categoryName"])
|
||
labelist.append(category)
|
||
|
||
|
||
labelist = list(set(labelist))
|
||
#print("len(labelist): {}".format(len(labelist)))
|
||
|
||
labeldict = {k: v for v, k in enumerate(labelist)}
|
||
labeldict.update({'DEFAULT' : len(labeldict)})
|
||
|
||
|
||
def gen_cat_lines(textacyCorpus, labeldict):
|
||
""" generates [topic1, topic2....] tok1 tok2 tok3 out of corpi"""
|
||
|
||
for doc in textacyCorpus:
|
||
label = labeldict.get(normalize(doc.metadata["categoryName"]), labeldict['DEFAULT'])
|
||
|
||
# frage nur die x häufigsten labels benutzen, rest raus?
|
||
|
||
|
||
yield "[ " + str(label) + " ] " + doc.text
|
||
|
||
|
||
line_gen = gen_cat_lines(corpus, labeldict)
|
||
|
||
|
||
path2save_results = path2save_results + "_kb_cat_llda_{}".format("top" + str(top_topic_words))
|
||
|
||
|
||
jgibbsLLDA(labeldict, line_gen, path2save_results, top_topic_words=top_topic_words)
|
||
|
||
|
||
end = time.time()
|
||
logprint("\n\n\nTime Elapsed Category-LLDA :{0} min\n\n".format((end - start) / 60))
|
||
|
||
|
||
@deprecated
|
||
def jgibbsLLDA_KB(corpus, path2save_results, top_topic_words = 7, kb_keywords=False):
|
||
"""ticket_ID -> KB_ID -> keywords / subject -> llda"""
|
||
|
||
start = time.time()
|
||
logprint("")
|
||
logprint("start {}-LLDA:".format("Keyword" if kb_keywords else "Subject"))
|
||
|
||
# ticket2kb_dict
|
||
|
||
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
|
||
|
||
ticket2kb_dict = {}
|
||
|
||
for line in kb2ticket_gen:
|
||
|
||
ticket_id = line[0]
|
||
kb_id = line[1]
|
||
|
||
ticket2kb_dict[ticket_id] = kb_id
|
||
# {'INC55646': 'KBA10065', 'INC65776': 'KBA10040', 'INC43025': 'KBA10056', ...}
|
||
|
||
kb_entries_used = len(list(set(ticket2kb_dict.values())))
|
||
print("kb_entries_used: {}".format(kb_entries_used))
|
||
|
||
|
||
|
||
# kb2keywords_dict
|
||
|
||
kb2keywords_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
|
||
|
||
next(kb2keywords_gen,None) #skip first line("ArticleID";"Subject";"Keywords";...)
|
||
|
||
kb2keywords_dict = {}
|
||
|
||
for line in kb2keywords_gen:
|
||
|
||
kb_id = line[0]
|
||
|
||
subject = line[1]
|
||
|
||
keywords = line[2]
|
||
keywords_list = [normalize(x) for x in str(keywords).split(",")]
|
||
|
||
if kb_id not in kb2keywords_dict.keys():
|
||
kb2keywords_dict[kb_id] = []
|
||
|
||
if kb_keywords:
|
||
for item in keywords_list:
|
||
if item != "":
|
||
kb2keywords_dict[kb_id].append(item)
|
||
|
||
else:
|
||
kb2keywords_dict[kb_id].append(subject)
|
||
|
||
|
||
#remove all empty items
|
||
kb2keywords_dict = { k : v for k,v in kb2keywords_dict.items() if len(v) != 0}
|
||
# {'KBA10091': ['citavi'], 'KBA10249': ['"beschaedigte unicard"', 'risse', '"defekte karte"'], ...}
|
||
|
||
|
||
|
||
|
||
#keywords2kb_dict
|
||
|
||
keywords2kb_dict = {}
|
||
|
||
for kb_id, lst in kb2keywords_dict.items():
|
||
for l in lst:
|
||
if l not in keywords2kb_dict.keys():
|
||
keywords2kb_dict[l] = [kb_id]
|
||
else:
|
||
keywords2kb_dict[l].append(kb_id)
|
||
# {'unicard namensaenderung': ['KBA10276'], 'vpn': ['KBA10063'], 'outlook_exchange': ['KBA10181'], ...}
|
||
|
||
|
||
|
||
|
||
# Look for actually used keywords
|
||
used_keywords = []
|
||
|
||
for doc in corpus:
|
||
|
||
ticket_number = doc.metadata["TicketNumber"]
|
||
|
||
kb_id = ticket2kb_dict.get(ticket_number, None)
|
||
|
||
keywords = kb2keywords_dict.get(kb_id, None)
|
||
|
||
if keywords and kb_id:
|
||
used_keywords.append(list(map(normalize,keywords)))
|
||
|
||
|
||
|
||
labelist = [item for sublist in used_keywords for item in sublist] #flatten list
|
||
labelist = list(set(labelist))
|
||
print("len(labelist): {}".format(len(labelist)))
|
||
|
||
|
||
|
||
labeldict = {k: v for v, k in enumerate(labelist)}
|
||
|
||
|
||
|
||
def gen_KB_lines(textacyCorpus, labeldict, ticket2kb_dict, kb2keywords_dict):
|
||
for doc in corpus:
|
||
|
||
ticket_number = doc.metadata["TicketNumber"]
|
||
|
||
kb_number = ticket2kb_dict.get(ticket_number, None)
|
||
|
||
keywords = kb2keywords_dict.get(kb_number, None)
|
||
|
||
if keywords:
|
||
|
||
label = ""
|
||
for kw in keywords:
|
||
label = label + str(labeldict.get(normalize(str(kw)), len(labeldict))) + " "
|
||
|
||
yield "[ " + label + "] " + doc.text
|
||
|
||
|
||
line_gen = gen_KB_lines(corpus, labeldict, ticket2kb_dict, kb2keywords_dict)
|
||
|
||
|
||
path2save_results = path2save_results + "_kb_{}_llda_{}".format("keys" if kb_keywords else "subs",
|
||
"top" + str(top_topic_words))
|
||
|
||
|
||
jgibbsLLDA(labeldict, line_gen, path2save_results, top_topic_words=top_topic_words)
|
||
|
||
end = time.time()
|
||
logprint("\n\n\nTime Elapsed {1}-LLDA :{0} min\n\n".format((end - start) / 60,"Keyword" if kb_keywords else "Subject"))
|
||
|
||
|
||
|
||
def jgibbsLLDA_KB_v2(corpus, path2save_results, top_topic_words = 7):
|
||
|
||
start = time.time()
|
||
logprint("")
|
||
logprint("start LLDA:")
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# kb2keywords_dict / kb2subjects_dict --> {str : [str]}
|
||
|
||
kb2keywords_dict = {}
|
||
kb2subjects_dict = {}
|
||
|
||
kb_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB_2017-09-13.csv", delimiter=";")
|
||
next(kb_gen, None) # skip first line "ArticleID";"Subject";"Keywords";...
|
||
|
||
for line in kb_gen:
|
||
|
||
kb_id = line[0]
|
||
|
||
|
||
subject = normalize(line[1])
|
||
|
||
keywords = [normalize(x) for x in str(line[2]).split(",")]
|
||
|
||
|
||
if kb_id not in kb2keywords_dict.keys():
|
||
kb2keywords_dict[kb_id] = keywords if keywords != [''] else ["DEFAULT"]
|
||
else:
|
||
kb2keywords_dict[kb_id] = kb2keywords_dict[kb_id] + keywords
|
||
|
||
|
||
if kb_id not in kb2subjects_dict.keys():
|
||
kb2subjects_dict[kb_id] = [normalize(subject) if subject != [''] else "DEFAULT"]
|
||
else:
|
||
kb2subjects_dict[kb_id].append(normalize(subject))
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# ticket2kbs_dict --> {str : [str]}
|
||
ticket2kbs_dict = {}
|
||
kb2ticket_gen = textacy.fileio.read_csv(FILEPATH + "M42-Export/KB2Ticket_2017-09-13.csv", delimiter=";")
|
||
next(kb2ticket_gen, None) # skip first line"TicketNumber";"ArticleID"
|
||
|
||
for line in kb2ticket_gen:
|
||
ticket_id = line[0]
|
||
kb_id = line[1]
|
||
|
||
if ticket_id not in ticket2kbs_dict.keys():
|
||
ticket2kbs_dict[ticket_id] = [kb_id]
|
||
else:
|
||
ticket2kbs_dict[ticket_id].append(kb_id)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# ticket2keywords --> {str:[str]}
|
||
ticket2keywords_dict = {}
|
||
|
||
for ticket_id, kb_ids in ticket2kbs_dict.items():
|
||
|
||
if ticket_id not in ticket2keywords_dict.keys():
|
||
ticket2keywords_dict[ticket_id] = []
|
||
|
||
for kb_id in kb_ids:
|
||
ticket2keywords_dict[ticket_id].append(kb2keywords_dict[kb_id])
|
||
|
||
|
||
ticket2keywords_dict[ticket_id] = flatten(ticket2keywords_dict[ticket_id])
|
||
|
||
|
||
|
||
|
||
# ticket2subjects --> {str:[str]}
|
||
ticket2subjects_dict = {}
|
||
|
||
for ticket_id, kb_ids in ticket2kbs_dict.items():
|
||
|
||
if ticket_id not in ticket2subjects_dict.keys():
|
||
ticket2subjects_dict[ticket_id] = []
|
||
|
||
for kb_id in kb_ids:
|
||
ticket2subjects_dict[ticket_id].append(kb2subjects_dict[kb_id])
|
||
|
||
|
||
ticket2subjects_dict[ticket_id] = flatten(ticket2subjects_dict[ticket_id])
|
||
|
||
|
||
|
||
# kb2keywords_dict {'KBA10230': ['DEFAULT'], 'KBA10129': ['DEFAULT'], 'KBA10287': ['sd_ansys_informationen'], } len = 260
|
||
# kb2subjects_dict {'KBA10230': ['unicard nochmal beantragen'], 'KBA10129': ['sd_entsperrung unicard nach verlust/wiederfinden'], } len = 260
|
||
# ticket2kbs_dict {'INC44526': ['KBA10056'], 'INC67205': ['KBA10056'], } len = 4832
|
||
# ticket2keywords_dict {'INC44526': ['DEFAULT'], 'INC67205': ['DEFAULT'], 'INC71863': ['DEFAULT'], 'INC44392': ['asknet'] } len=4832
|
||
# ticket2subjects_dict {'INC44526': ['sd_telefon (antrag: neuanschluss, umzug, aenderung erledigt)'], len=4832
|
||
|
||
|
||
count_dict = {}
|
||
for v in ticket2kbs_dict.values():
|
||
for kb in v:
|
||
if kb in count_dict.keys():
|
||
count_dict[kb] +=1
|
||
else:
|
||
count_dict[kb] = 1
|
||
|
||
sorted_dict = sorted(count_dict.items(), key=operator.itemgetter(1))
|
||
|
||
for k,v in sorted_dict:
|
||
subs = kb2subjects_dict[k]
|
||
keys = kb2keywords_dict[k]
|
||
print(subs, keys , v) # frage wieviele tickets pro topic?
|
||
|
||
print("kb_entrys used: {}".format(len(sorted_dict))) # frage wie viele kb_entry's insg genutzt?: 155
|
||
|
||
|
||
|
||
labelist = ticket2keywords_dict.values()
|
||
labelist = flatten(labelist)
|
||
labelist = list(set(labelist))
|
||
labeldict = {k: v for v, k in enumerate(labelist)}
|
||
|
||
|
||
|
||
|
||
|
||
def gen_key_lines(textacyCorpus, labeldict, ticket2keywords_dict):
|
||
for doc in corpus:
|
||
|
||
ticket_number = doc.metadata["TicketNumber"]
|
||
|
||
keywords = ticket2keywords_dict.get(ticket_number, ['DEFAULT'])
|
||
|
||
if keywords != ['DEFAULT']:
|
||
|
||
label = ""
|
||
for kw in keywords:
|
||
label = label + str(labeldict.get(normalize(str(kw)), labeldict['DEFAULT'])) + " "
|
||
|
||
yield "[ " + label + "] " + doc.text
|
||
|
||
|
||
keys_line_gen = gen_key_lines(corpus, labeldict, ticket2keywords_dict)
|
||
|
||
path2save_keys_results = path2save_results + "_kb_keys_llda_{}".format("top" + str(top_topic_words))
|
||
|
||
jgibbsLLDA(labeldict, keys_line_gen, path2save_keys_results, top_topic_words=top_topic_words)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
labelist = ticket2subjects_dict.values()
|
||
labelist = flatten(labelist)
|
||
labelist = list(set(labelist))
|
||
labeldict = {k: v for v, k in enumerate(labelist)}
|
||
|
||
labeldict.update({'DEFAULT' : len(labeldict)})
|
||
|
||
subj_line_gen = gen_key_lines(corpus, labeldict, ticket2subjects_dict)
|
||
|
||
path2save_subj_results = path2save_results + "_kb_subj_llda_{}".format("top" + str(top_topic_words))
|
||
|
||
jgibbsLLDA(labeldict, subj_line_gen, path2save_subj_results, top_topic_words=top_topic_words)
|
||
|
||
|
||
|
||
|
||
|
||
end = time.time()
|
||
logprint("\n\n\nTime Elapsed LLDA :{0} min\n\n".format((end - start) / 60))
|
||
|
||
|
||
|
||
|
||
|
||
def main( algorithm="llda"):
|
||
logprint("Topic Modeling: {0}".format(datetime.now()))
|
||
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
|
||
corpus_en_path = FILEPATH + config.get("en_corpus", "path")
|
||
preCorpus_name = "de" + "_pre_ticket_old"
|
||
preCorpus_name = "de" + "_pre_ticket"
|
||
|
||
resultspath = FILEPATH + "results/pre"
|
||
# load corpus
|
||
de_corpus, parser = load_corpus(corpus_name=preCorpus_name, corpus_path=corpus_de_path)
|
||
logprint("Corpus loaded: {0}".format(de_corpus.lang))
|
||
|
||
|
||
|
||
if algorithm == "llda":
|
||
|
||
top_topic_words = 5
|
||
|
||
jgibbsLLDA_category(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
|
||
|
||
jgibbsLLDA_KB_v2(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words)
|
||
|
||
|
||
"""
|
||
kb_keywords = False
|
||
jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
||
|
||
kb_keywords = True
|
||
jgibbsLLDA_KB(de_corpus, path2save_results=resultspath, top_topic_words=top_topic_words, kb_keywords=kb_keywords)
|
||
|
||
|
||
top_topic_words = 10
|
||
path2save_results = resultspath + "_{}_{}".format(algorithm,"top"+str(top_topic_words))
|
||
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||
|
||
|
||
top_topic_words = 15
|
||
path2save_results = resultspath + "_{}_{}".format(algorithm, "top" + str(top_topic_words))
|
||
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||
|
||
top_topic_words = 20
|
||
path2save_results = resultspath + "_{}_{}".format(algorithm, "top" + str(top_topic_words))
|
||
jgibbsLLDA(de_corpus, path2save_results=path2save_results, top_topic_words=top_topic_words)
|
||
|
||
"""
|
||
else:
|
||
|
||
|
||
textacyTopicModeling(ngrams = 1,
|
||
topicModel = algorithm,
|
||
corpus=de_corpus)
|
||
"""
|
||
textacyTopicModeling(ngrams=1,
|
||
min_df=1,
|
||
max_df=0.9,
|
||
topicModel=algorithm,
|
||
n_topics=20,
|
||
corpus=de_corpus)
|
||
|
||
textacyTopicModeling(ngrams=1,
|
||
min_df=1,
|
||
max_df=0.9,
|
||
topicModel=algorithm,
|
||
n_topics=25,
|
||
corpus=de_corpus)
|
||
|
||
|
||
textacyTopicModeling(ngrams=1,
|
||
min_df=1,
|
||
max_df=0.9,
|
||
topicModel=algorithm,
|
||
n_topics=30,
|
||
corpus=de_corpus)
|
||
"""
|
||
|
||
|
||
textacyTopicModeling(ngrams=(1, 2),
|
||
topicModel=algorithm,
|
||
corpus=de_corpus)
|
||
"""
|
||
textacyTopicModeling(ngrams = (1,2),
|
||
min_df = 1,
|
||
max_df = 0.9,
|
||
topicModel = algorithm,
|
||
n_topics =20,
|
||
corpus=de_corpus)
|
||
|
||
textacyTopicModeling(ngrams = (1,2),
|
||
min_df = 1,
|
||
max_df = 0.9,
|
||
topicModel = algorithm,
|
||
n_topics =25,
|
||
corpus=de_corpus)
|
||
|
||
|
||
textacyTopicModeling(ngrams = (1,2),
|
||
min_df = 1,
|
||
max_df = 0.9,
|
||
topicModel = algorithm,
|
||
n_topics =30,
|
||
corpus=de_corpus)
|
||
"""
|
||
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|
||
|
||
|
||
|
||
|
||
|
||
|