470 lines
14 KiB
Python
470 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
||
import csv
|
||
import random
|
||
import re
|
||
|
||
import spacy
|
||
import textacy
|
||
import sys
|
||
|
||
import xml.etree.ElementTree as ET
|
||
"""
|
||
import keras
|
||
import numpy as np
|
||
from keras.layers import Dense, SimpleRNN, LSTM, TimeDistributed, Dropout
|
||
from keras.models import Sequential
|
||
import keras.backend as K
|
||
"""
|
||
csv.field_size_limit(sys.maxsize)
|
||
|
||
"""
|
||
def getFirstSynonym(word, thesaurus_gen):
|
||
|
||
word = word.lower()
|
||
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
|
||
|
||
|
||
# durch den thesaurrus iterieren
|
||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||
|
||
# durch den synonymblock iterieren
|
||
for syn in syn_block:
|
||
syn = syn.lower().split(" ") if not re.match(r'\A[\w-]+\Z', syn) else syn # aus synonym mach liste (um evtl. sätze zu identifieziren)
|
||
|
||
# falls das wort in dem synonym enthalten ist (also == einem Wort in der liste ist)
|
||
if word in syn:
|
||
|
||
# Hauptform suchen
|
||
if "auptform" in syn:
|
||
# nicht ausgeben, falls es in Klammern steht
|
||
for w in syn:
|
||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
||
return w
|
||
|
||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||
if len(syn) == 1:
|
||
w = syn[0]
|
||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
||
return w
|
||
|
||
return word # zur Not die eingabe ausgeben
|
||
|
||
|
||
"""
|
||
"""
|
||
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False, normalize_synonyms=False):
|
||
|
||
# use preprocessing
|
||
if customPreprocessing is not None:
|
||
string = customPreprocessing(string)
|
||
|
||
|
||
|
||
if custom_stopwords is not None:
|
||
custom_stopwords = custom_stopwords
|
||
else:
|
||
custom_stopwords = []
|
||
|
||
if custom_words is not None:
|
||
custom_words = custom_words
|
||
else:
|
||
custom_words = []
|
||
|
||
if custom_symbols is not None:
|
||
custom_symbols = custom_symbols
|
||
else:
|
||
custom_symbols = []
|
||
|
||
|
||
# custom stoplist
|
||
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
||
stop_words = __import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS
|
||
|
||
stoplist =list(stop_words) + custom_stopwords
|
||
# List of symbols we don't care about either
|
||
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
||
|
||
|
||
|
||
# get rid of newlines
|
||
string = string.strip().replace("\n", " ").replace("\r", " ")
|
||
|
||
# replace twitter
|
||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||
string = mentionFinder.sub("MENTION", string)
|
||
|
||
# replace emails
|
||
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||
string = emailFinder.sub("EMAIL", string)
|
||
|
||
# replace urls
|
||
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||
string = urlFinder.sub("URL", string)
|
||
|
||
# replace HTML symbols
|
||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||
|
||
|
||
|
||
|
||
# parse with spaCy
|
||
spacy_doc = PARSER(string)
|
||
tokens = []
|
||
|
||
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
||
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #IDEE NUM mit in den Corpus aufnehmen, aber fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||
|
||
# append Tokens to a list
|
||
for tok in spacy_doc:
|
||
if tok.pos_ in added_POS:
|
||
if lemmatize:
|
||
tokens.append(tok.lemma_.lower().strip())
|
||
else:
|
||
tokens.append(tok.text.lower().strip())
|
||
|
||
# add entities
|
||
if tok.ent_type_ in added_entities:
|
||
tokens.append(tok.text.lower())
|
||
|
||
|
||
|
||
# remove stopwords
|
||
tokens = [tok for tok in tokens if tok not in stoplist]
|
||
|
||
# remove symbols
|
||
tokens = [tok for tok in tokens if tok not in symbols]
|
||
|
||
# remove custom_words
|
||
tokens = [tok for tok in tokens if tok not in custom_words]
|
||
|
||
# remove single characters
|
||
tokens = [tok for tok in tokens if len(tok)>1]
|
||
|
||
# remove large strings of whitespace
|
||
remove_large_strings_of_whitespace(" ".join(tokens))
|
||
|
||
|
||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität)
|
||
|
||
if normalize_synonyms:
|
||
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||
|
||
return " ".join(tokens)
|
||
|
||
|
||
def remove_large_strings_of_whitespace(sentence):
|
||
|
||
whitespaceFinder = re.compile(r'(\r\n|\r|\n)', re.IGNORECASE)
|
||
sentence = whitespaceFinder.sub(" ", sentence)
|
||
|
||
tokenlist = sentence.split(" ")
|
||
|
||
while "" in tokenlist:
|
||
tokenlist.remove("")
|
||
while " " in tokenlist:
|
||
tokenlist.remove(" ")
|
||
|
||
return " ".join(tokenlist)
|
||
"""
|
||
"""
|
||
def generateFromXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False,lemmatize=False):
|
||
import xml.etree.ElementTree as ET
|
||
|
||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||
root = tree.getroot()
|
||
|
||
for ticket in root:
|
||
metadata = {}
|
||
text = "ERROR"
|
||
for field in ticket:
|
||
if field.tag == textfield:
|
||
if clean:
|
||
text = cleanText_words(field.text,PARSER,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
||
else:
|
||
text = field.text
|
||
else:
|
||
#idee hier auch cleanen?
|
||
metadata[field.tag] = field.text
|
||
yield text, metadata
|
||
"""
|
||
|
||
|
||
LANGUAGE = 'de'
|
||
#PARSER = de_core_news_md.load()
|
||
PARSER = spacy.load(LANGUAGE)
|
||
|
||
from textCleaning import TextCleaner
|
||
|
||
cleaner = TextCleaner(parser=PARSER)
|
||
|
||
|
||
def generateTextfromTicketXML(path2xml, textfield='Beschreibung', clean=False, normalize_Synonyms=False, lemmatize=False):
|
||
import xml.etree.ElementTree as ET
|
||
|
||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||
root = tree.getroot()
|
||
|
||
|
||
for ticket in root:
|
||
text = "ERROR"
|
||
for field in ticket:
|
||
if field.tag == textfield:
|
||
if clean:
|
||
text = cleaner.normalizeSynonyms(cleaner.removeWords(cleaner.keepPOSandENT(field.text))) #,normalize_synonyms=normalize_Synonyms,lemmatize=lemmatize)
|
||
else:
|
||
text = field.text
|
||
yield text
|
||
|
||
def generateMetadatafromTicketXML(path2xml, textfield='Beschreibung'):#,keys_to_clean=["Loesung","Zusammenfassung"]):
|
||
import xml.etree.ElementTree as ET
|
||
|
||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||
|
||
root = tree.getroot()
|
||
|
||
for ticket in root:
|
||
metadata = {}
|
||
for field in ticket:
|
||
if field.tag != textfield:
|
||
if field.tag == "Zusammenfassung":
|
||
metadata[field.tag] = cleaner.removePunctuation(field.text)
|
||
elif field.tag == "Loesung":
|
||
metadata[field.tag] = cleaner.removeWhitespace(field.text)
|
||
else:
|
||
metadata[field.tag] = field.text
|
||
|
||
yield metadata
|
||
|
||
|
||
|
||
|
||
"""
|
||
def cleanText_symbols(string, parser=PARSER, custom_symbols=None, keep=None):
|
||
|
||
if custom_symbols is not None:
|
||
custom_symbols = custom_symbols
|
||
else:
|
||
custom_symbols = []
|
||
|
||
if keep is not None:
|
||
keep = keep
|
||
else:
|
||
keep = []
|
||
|
||
# List of symbols we don't care about
|
||
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
||
|
||
# parse with spaCy
|
||
spacy_doc = parser(string)
|
||
tokens = []
|
||
|
||
pos = ["NUM", "SPACE", "PUNCT"]
|
||
for p in keep:
|
||
pos.remove(p)
|
||
|
||
|
||
# append Tokens to a list
|
||
for tok in spacy_doc:
|
||
if tok.pos_ not in pos and tok.text not in symbols:
|
||
tokens.append(tok.text)
|
||
|
||
return " ".join(tokens)
|
||
|
||
def cleanText_words(string,parser=PARSER, custom_stopwords=None, custom_words=None, customPreprocessing=cleanText_symbols, lemmatize=False, normalize_synonyms=False):
|
||
|
||
# use preprocessing
|
||
if customPreprocessing is not None:
|
||
string = customPreprocessing(string)
|
||
|
||
if custom_stopwords is not None:
|
||
custom_stopwords = custom_stopwords
|
||
else:
|
||
custom_stopwords = []
|
||
|
||
if custom_words is not None:
|
||
custom_words = custom_words
|
||
else:
|
||
custom_words = []
|
||
|
||
|
||
# custom stoplist
|
||
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
||
stop_words = __import__("spacy." + parser.lang, globals(), locals(), ['object']).STOP_WORDS
|
||
|
||
stoplist =list(stop_words) + custom_stopwords
|
||
|
||
# replace twitter
|
||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||
string = mentionFinder.sub("MENTION", string)
|
||
|
||
# replace emails
|
||
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||
string = emailFinder.sub("EMAIL", string)
|
||
|
||
# replace urls
|
||
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||
string = urlFinder.sub("URL", string)
|
||
|
||
# replace HTML symbols
|
||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||
|
||
|
||
|
||
# parse with spaCy
|
||
spacy_doc = parser(string)
|
||
tokens = []
|
||
|
||
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
||
added_POS = ["NOUN"]#, "NUM" ]#,"VERB","ADJ"] #fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||
|
||
# append Tokens to a list
|
||
for tok in spacy_doc:
|
||
if tok.pos_ in added_POS:
|
||
if lemmatize:
|
||
tokens.append(tok.lemma_.lower().strip())
|
||
else:
|
||
tokens.append(tok.text.lower().strip())
|
||
|
||
# add entities
|
||
if tok.ent_type_ in added_entities:
|
||
tokens.append(tok.text.lower())
|
||
|
||
|
||
|
||
# remove stopwords
|
||
tokens = [tok for tok in tokens if tok not in stoplist]
|
||
|
||
# remove custom_words
|
||
tokens = [tok for tok in tokens if tok not in custom_words]
|
||
|
||
# remove single characters
|
||
tokens = [tok for tok in tokens if len(tok)>1]
|
||
|
||
# remove large strings of whitespace
|
||
#remove_whitespace(" ".join(tokens))
|
||
|
||
|
||
#idee abkürzungen auflösen (v.a. TU -> Technische Universität): abkürzungsverezeichnis
|
||
|
||
if normalize_synonyms:
|
||
tokens = [str(getFirstSynonym(tok,THESAURUS_list)) for tok in tokens]
|
||
|
||
return " ".join(set(tokens))
|
||
|
||
def cleanText_removeWhitespace(sentence):
|
||
whitespaceFinder = re.compile(r'(\r\n|\r|\n|(\s)+)', re.IGNORECASE)
|
||
sentence = whitespaceFinder.sub(" ", sentence)
|
||
return sentence
|
||
|
||
#todo: preprocess pipe: removewhitespace, removePUNCT, resolveAbk, keepPOS, keepEnt, removeWords, normalizeSynonyms
|
||
|
||
|
||
def getFirstSynonym(word, thesaurus_gen):
|
||
|
||
word = word.lower()
|
||
|
||
|
||
# durch den thesaurrus iterieren
|
||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||
|
||
for syn in syn_block:
|
||
syn = syn.lower()
|
||
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
||
if word == syn:
|
||
return getHauptform(syn_block, word)
|
||
else: # falls es ein satz ist
|
||
if word in syn:
|
||
return getHauptform(syn_block, word)
|
||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||
|
||
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
||
|
||
for syn in syn_block:
|
||
syn = syn.lower()
|
||
|
||
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
||
# nicht ausgeben, falls es in Klammern steht
|
||
for w in syn.split(" "):
|
||
if not re.match(r'\([^)]+\)', w):
|
||
return w
|
||
|
||
if default_return_first_Syn:
|
||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||
for w in syn_block:
|
||
if not re.match(r'\([^)]+\)', w):
|
||
return w
|
||
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
||
"""
|
||
|
||
def printRandomDoc(textacyCorpus):
|
||
print()
|
||
|
||
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
||
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
||
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||
|
||
print()
|
||
|
||
####################'####################'####################'####################'####################'##############
|
||
# todo config-file
|
||
|
||
import de_core_news_md
|
||
DATAPATH = "ticketSamples.xml"
|
||
DATAPATH_thesaurus = "openthesaurus.csv"
|
||
|
||
|
||
|
||
normalize_Synonyms = True
|
||
clean = True
|
||
lemmatize = True
|
||
|
||
custom_words = ["grüßen", "fragen"]
|
||
|
||
####################'####################'####################'####################'####################'##############
|
||
|
||
|
||
## files to textacy-corpus
|
||
textacyCorpus = textacy.Corpus(PARSER)
|
||
|
||
print("add texts to textacy-corpus...")
|
||
textacyCorpus.add_texts(texts=generateTextfromTicketXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize), metadatas=generateMetadatafromTicketXML(DATAPATH))
|
||
|
||
|
||
#for txt, dic in generateFromXML(DATAPATH, normalize_Synonyms=normalize_Synonyms, clean=clean, lemmatize=lemmatize):
|
||
# textacyCorpus.add_text(txt,dic)
|
||
|
||
|
||
|
||
for doc in textacyCorpus:
|
||
print(doc.metadata)
|
||
print(doc.text)
|
||
|
||
#print(textacyCorpus[2].text)
|
||
#printRandomDoc(textacyCorpus)
|
||
#print(textacyCorpus[len(textacyCorpus)-1].text)
|
||
|
||
|
||
print()
|
||
print()
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|