topicModelingTickets/testo.py

529 lines
12 KiB
Python

# -*- coding: utf-8 -*-
import time
start = time.time()
import logging
import csv
import functools
import os.path
import re
import subprocess
import time
import xml.etree.ElementTree as ET
import sys
import spacy
import textacy
from scipy import *
from textacy import Vectorizer
import warnings
import configparser as ConfigParser
import sys
import hunspell
from postal.parser import parse_address
csv.field_size_limit(sys.maxsize)
# Load the configuration file
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
# config logging
logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
thesauruspath = config.get("filepath","thesauruspath")
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
DE_PARSER = spacy.load("de") #todo spacherkennung idee: verschiedene Corpi für verschiedene Sprachen
SPELLCHECKER = hunspell.HunSpell('/usr/share/hunspell/de_DE.dic',
'/usr/share/hunspell/de_DE.aff')
def replaceRockDots():
return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
"""
de_stop_words= set(
list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS) +
list(textacy.fileio.read_file_lines("stopwords-de.txt"))
)
LEMMAS = list(textacy.fileio.read_file_lines(filepath="lemmatization-de.txt"))
VORNAMEN = list(textacy.fileio.read_file_lines("vornamen.txt"))
"""
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("de_stop_words.txt")))
LEMMAS = list(textacy.fileio.read_file_lines("lemmas.txt"))
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,textacy.fileio.read_file_lines("firstnames.txt")))
print(de_stop_words[10:30])
print(LEMMAS[10:30])
print(VORNAMEN[10:30])
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
regex_topLvl = r'\.[a-z]{2,3}(\.[a-z]{2,3})?'
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
def printlog(string, level="INFO"):
"""log and prints"""
print(string)
if level=="INFO":
logging.info(string)
elif level=="DEBUG":
logging.debug(string)
elif level == "WARNING":
logging.warning(string)
printlog("Load functions")
def compose(*functions):
def compose2(f, g):
return lambda x: f(g(x))
return functools.reduce(compose2, functions, lambda x: x)
def get_calling_function():
"""finds the calling function in many decent cases.
https://stackoverflow.com/questions/39078467/python-how-to-get-the-calling-function-not-just-its-name
"""
fr = sys._getframe(1) # inspect.stack()[1][0]
co = fr.f_code
for get in (
lambda:fr.f_globals[co.co_name],
lambda:getattr(fr.f_locals['self'], co.co_name),
lambda:getattr(fr.f_locals['cls'], co.co_name),
lambda:fr.f_back.f_locals[co.co_name], # nested
lambda:fr.f_back.f_locals['func'], # decorators
lambda:fr.f_back.f_locals['meth'],
lambda:fr.f_back.f_locals['f'],
):
try:
func = get()
except (KeyError, AttributeError):
pass
else:
if func.__code__ == co:
return func
raise AttributeError("func not found")
def printRandomDoc(textacyCorpus):
import random
print()
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
randIndex = int((len(textacyCorpus) - 1) * random.random())
printlog("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
print()
def csv_to_contentStream(path2csv: str, content_collumn_name: str):
"""
:param path2csv: string
:param content_collumn_name: string
:return: string-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
for i,lst in enumerate(stream):
if i == 0:
# look for desired column
for j,col in enumerate(lst):
if col == content_collumn_name:
content_collumn = j
else:
yield lst[content_collumn]
############# return bool
def keepPOS(pos_list):
return lambda tok : tok.pos_ in pos_list
def removePOS(pos_list):
return lambda tok : tok.pos_ not in pos_list
def removeWords(words, keep=None):
if hasattr(keep, '__iter__'):
for k in keep:
try:
words.remove(k)
except ValueError:
pass
return lambda tok : tok.lower_ not in words
def keepENT(ent_list):
return lambda tok : tok.ent_type_ in ent_list
def removeENT(ent_list):
return lambda tok: tok.ent_type_ not in ent_list
def remove_words_containing_Numbers():
return lambda tok: not bool(re.search('\d', tok.lower_))
"""
def remove_words_containing_topLVL():
return lambda tok: not bool(re.search(regex_topLvl, tok.lower_))
"""
def remove_words_containing_specialCharacters():
return lambda tok: not bool(re.search(regex_specialChars, tok.lower_))
def remove_long_words():
return lambda tok: not len(tok.lower_) < 2
def remove_short_words():
return lambda tok: not len(tok.lower_) > 35
def remove_first_names():
return lambda tok: tok.lower_ not in [name.lower() for name in VORNAMEN]
#falls wort nicht in vocab, erst schauen ob teilwort bekannt ist, falls ja, schauen ob es davor oder danach bullshit stehen hat. ggf trennen
############# strings
def remove_addresses(string):
pass #todo
def stringcleaning(stringstream, funclist):
for string in stringstream:
for f in funclist:
string = f(string)
yield string
def cut_after(word="gruss"):
return lambda string: string.rpartition(word)[0] if word in string else string
def seperate_words_on_regex(regex=regex_specialChars):
return lambda string: " ".join(re.compile(regex).split(string))
def remove_words_containing_topLVL():
return lambda string: " ".join([w.lower() for w in string.split() if not re.search(regex_topLvl, w) ])
def replaceSpecialChars(replace_with=" "):
return lambda string: re.sub(regex_specialChars, replace_with, string.lower())
def replaceNumbers(replace_with="NUMBER"):
return lambda string : textacy.preprocess.replace_numbers(string.lower(), replace_with=replace_with)
def replacePhonenumbers(replace_with="PHONENUMBER"):
return lambda string: textacy.preprocess.replace_phone_numbers(string.lower(), replace_with=replace_with)
def replaceSharpS(replace_with="ss"):
return lambda string: re.sub(r'[ß]',replace_with,string.lower())
def fixUnicode():
return lambda string: textacy.preprocess.fix_bad_unicode(string.lower(), normalization=u'NFC')
"""
def lemmatizeWord(word,filepath=LEMMAS):
for line in list(textacy.fileio.read_file_lines(filepath=filepath)):
if word.lower() == line.split()[1].strip().lower():
return line.split()[0].strip().lower()
return word.lower() # falls nix gefunden wurde
"""
def create_lemma_dicts(lemmalist=LEMMAS):
w_dict = {}
lem_dict = {}
for i, line in enumerate(lemmalist):
try:
lem_word_pair = line.split()
if len(lem_word_pair) != 2:
print(line)
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
except:
print(line)
if lemma not in lem_dict:
lem_dict[lemma] = i
if word not in w_dict:
w_dict[word] = lem_dict[lemma]
l_dict = {v: k for k, v in lem_dict.items()} # switch key/values
return l_dict,w_dict
lemma_dict,word_dict = create_lemma_dicts()
def lemmatizeWord(word,l_dict=lemma_dict,w_dict=word_dict):
#mehrmals machen
for i in range(3):
try:
word = l_dict[w_dict[word.lower()]] if word.lower() in w_dict else word.lower()
except:
print(word)
return word
def autocorrectWord(word,spellchecker=SPELLCHECKER):
try:
return spellchecker.suggest(word)[0]
except:
return word
"""
def lemmatize():
return lambda doc: " ".join([lemmatizeWord(tok.lower_) for tok in doc])
"""
def lemmatize():
return lambda string: " ".join([lemmatizeWord(s.lower()) for s in string.split()])
def autocorrect():
return lambda string: " ".join([autocorrectWord(s.lower()) for s in string.split()])
def processTextstream(textstream, pre_parse=None, in_parse=None, post_parse=None, parser=DE_PARSER):
"""
:param textstream: string-gen
:param funclist: [func]
:param parser: spacy-parser
:return: string-gen
"""
#pre_parse
if pre_parse is not None:
textstream = stringcleaning(textstream, pre_parse)
pipe = parser.pipe(textstream)
tokens=[]
for doc in pipe:
tokens = [tok for tok in doc]
# in_parse
if in_parse is not None:
tokens = processTokens(tokens, in_parse)
# post_parse
if post_parse is not None:
#todo vllt doch lieber eine große funktion basteln, dieses zusammenfrickeln nervt
yield post_parse(parser(" ".join([tok.lower_ for tok in tokens])))
else:
yield " ".join([tok.lower_ for tok in tokens])
def processTokens(tokens, funclist):
# in:tokenlist, funclist
# out: tokenlist
for f in funclist:
tokens = list(filter(f, tokens))
return tokens
pre_parse=[
fixUnicode(),
replaceRockDots(),
remove_words_containing_topLVL(),
seperate_words_on_regex(),
lemmatize(),
cut_after(),
autocorrect()
]
custom_words=["geehrt","dame","herr","hilfe","problem","lauten","bedanken","voraus","hallo","gerne","freundlich","fragen","fehler","bitten","ehre"
]
in_parse=[
#removeENT(["PERSON"]),
#todo addressen enfernen
#idee rechtschreibkorrektur
#idee thesaurus
remove_words_containing_Numbers(),
removePOS(["PUNCT","SPACE","NUM"]),
removeWords(de_stop_words+custom_words),
remove_long_words(),
remove_short_words(),
remove_first_names(),
#keepPOS(["NOUN"]),
]
post_parse=None
"""
pipe=[
##String
fixUnicode(),
replaceHardS(),
resolveAbbrivations(),
remove_words_containing_topLVL(),
replaceSpecialChars(" "), (mit Leerzeichen erstzen, dadruch werden Terme wie 8203;verfügung getrennt
remove_words_containing_Numbers(),
##spacyParse
removeENT("PERSON"),
keepPOS(["NOUN"]),
#ODER
lemmatize(),
removeWords(de_stop_words + config.get("preprocessing","custom_words").split(",")),
# evtl.
spellCorrection(),
keepUniqeTokens(),
]
"""
path2csv = "M42-Export/Tickets_med.csv"
ticketcorpus = textacy.Corpus(DE_PARSER)
## add files to textacy-corpus,
printlog("add texts to textacy-corpus")
ticketcorpus.add_texts(
processTextstream(csv_to_contentStream(path2csv,"Description"), pre_parse=pre_parse, in_parse=in_parse, post_parse=post_parse)
)
for i in range(10):
printRandomDoc(ticketcorpus)
"""
spracherkennung
alles nach grüße ist irrelevant außer PS:
vllt kategorien in unterkategorien aufteilen
allg:
utf-korregieren,
emails, urls, nummern raus
vllt sogar alles, was ebend jenes enthält (oder auf .toplvldomain bzw. sonderzeichen enthält oder alles was ein @ enthält
sinnvoller wörter von müll trennen: 8203;verfügung -> bei sonderzeichen wörter trennen
abkürzungen raus: m.a, o.ä.
wörter korrigieren
sinnlose bsp: nr54065467 455a33c5 tvt?= ------problem--------
"""