topicModelingTickets/init.py

286 lines
8.2 KiB
Python

# -*- coding: utf-8 -*-
from datetime import datetime
import time
import logging
from nltk.corpus import stopwords as nltk_stopwords
from collections import Counter
import csv
import re
import xml.etree.ElementTree as ET
import spacy
import textacy
from scipy import *
import sys
csv.field_size_limit(sys.maxsize)
import pickle
# todo configuration file ?
"""
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
"""
# config logging
logfile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
logging.basicConfig(filename=logfile, level=logging.INFO)
DE_PARSER = spacy.load("de")
EN_PARSER = spacy.load("en")
def replaceRockDots():
return lambda string: re.sub(r'[ß]', "ss",
(re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
def printlog(string, level="INFO"):
"""log and prints"""
print(string)
if level == "INFO":
logging.info(string)
elif level == "DEBUG":
logging.debug(string)
elif level == "WARNING":
logging.warning(string)
def save_obj(obj, path):
with open(path + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(path ):
with open(path + '.pkl', 'rb') as f:
return pickle.load(f)
def create_lemma_dict(lemmalist):
lemma_dict = {}
for line in lemmalist:
lem_word_pair = line.split()
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
lemma_dict[word] = lemma
return lemma_dict
def build_thesaurus(path2lexicalentries, path2synsets):
lextree = ET.parse(path2lexicalentries, ET.XMLParser(encoding="utf-8"))
syntree = ET.parse(path2synsets, ET.XMLParser(encoding="utf-8"))
lexroot = lextree.getroot()
synroot = syntree.getroot()
thesaurus = []
for r in synroot:
for element in r:
if element.tag == "Synset":
sysnet = []
attrib = element.attrib
id = attrib["id"]
for ro in lexroot:
for elem in ro:
if elem.tag == "LexicalEntry":
subs_dicts = [subentry.attrib for subentry in elem]
# <class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
dic = {k: v for x in subs_dicts for k, v in x.items()} # to one dict
if "synset" in dic.keys():
if dic["synset"] == id:
string = (dic["writtenForm"])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# alle punkte raus
string = re.sub(r'[.]', "", string)
# alles in klammern raus
string = re.sub(r"\((.*)\)", " ", string)
# längeres leerzeichen normalisieren
string = textacy.preprocess.normalize_whitespace(string)
sysnet.append(string.lower().strip())
# nach anzhal der wörter in den strings sortieren
sysnet.sort(key=lambda x: len(x.split()))
if len(sysnet) != 0:
# todo warum sind manche leer?
thesaurus.append(sysnet)
return thesaurus
#todo thesaurus in dictionary
def create_stopwordlist():
de_stop_words1 = list(map(replaceRockDots(),
list(
map(textacy.preprocess.normalize_whitespace,
textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")
)
)
)
)
de_stop_words2 = list(map(replaceRockDots(),list(set(nltk_stopwords.words('german')))))
de_stop_words3 = list(map(replaceRockDots(),list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)))
de_stop_words4 = list(map(replaceRockDots(),list(textacy.fileio.read_file_lines("stopwords-de.txt"))))
de_stop_words = list(set(de_stop_words1 + de_stop_words2 + de_stop_words3 + de_stop_words4))
return de_stop_words
#todo en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)+ list(set(nltk_stopwords.words('english'))))
########################## Spellchecking ##########################################
# http://norvig.com/spell-correct.html
# http://wortschatz.uni-leipzig.de/en/download
def words(text): return re.findall(r'\w+', text.lower())
##################################################################################################
# ziel: dictionaries für thesaurus, correctwordliste und lemmas als ladbare .json
# außerdem saubere stoppwortliste und nomenliste
# THESAURUS
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries_small.xml"
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
# SPELLCHECKING
path2words = '/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt'
path2lemmadict = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemma_dict.pkl"
path2wordlist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/words_list.pkl"
path2thesauruslist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/thesaurus_list.pkl"
path2stopwordlist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/stopwords_list.pkl"
path2NOUNSlist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nouns_list.pkl"
path2firstnameslist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames_list.pkl"
def main():
start = time.time()
printlog("Init: {0}".format(datetime.now()))
printlog("create and save lemma_dict")
LEMMAS = list(
textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
lemma_dict = create_lemma_dict(LEMMAS)
save_obj(lemma_dict, path2lemmadict)
printlog("Build and save Wordlist for Spellchecking")
WORDS = Counter(words(open(path2words).read()))
save_obj(WORDS, path2wordlist)
printlog("Build and save Thesaurus")
THESAURUS = build_thesaurus(path2lexicalentries=lexicalentries, path2synsets=synsets)
print(THESAURUS[0:10])
save_obj(THESAURUS, path2thesauruslist)
printlog("Build and save stoppwortliste")
de_stop_words = create_stopwordlist()
save_obj(de_stop_words, path2stopwordlist)
printlog("Build and save nomenliste")
NOUNS = list(textacy.fileio.read_file_lines(
"/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen2.txt")) + list(
textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen.txt"))
NOUNS = list(map(textacy.preprocess.normalize_whitespace, NOUNS))
save_obj(NOUNS, path2NOUNSlist)
printlog("Build and save fistnameslist")
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace, textacy.fileio.read_file_lines(
"/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames.txt")))
save_obj(VORNAMEN, path2firstnameslist)
end = time.time()
printlog("Time Elapsed Preprocessing:{0} min".format((end - start) / 60))
if __name__ == "__main__":
main()