290 lines
7.6 KiB
Python
290 lines
7.6 KiB
Python
# -*- coding: utf-8 -*-
|
|
import csv
|
|
import functools
|
|
import os.path
|
|
import re
|
|
import subprocess
|
|
import time
|
|
import xml.etree.ElementTree as ET
|
|
import sys
|
|
import spacy
|
|
import textacy
|
|
from scipy import *
|
|
from textacy import Vectorizer
|
|
|
|
csv.field_size_limit(sys.maxsize)
|
|
|
|
|
|
|
|
path2xml = "ticket.xml"
|
|
import de_core_news_md
|
|
|
|
|
|
PARSER = de_core_news_md.load()
|
|
corpus = textacy.Corpus(PARSER)
|
|
thesauruspath = "openthesaurus.csv"
|
|
THESAURUS = list(textacy.fileio.read_csv(thesauruspath, delimiter=";"))
|
|
|
|
|
|
|
|
|
|
def printRandomDoc(textacyCorpus):
|
|
import random
|
|
print()
|
|
|
|
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
|
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
|
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
|
|
|
print()
|
|
|
|
|
|
|
|
def generateMainTextfromTicketXML(path2xml, main_textfield='Beschreibung'):
|
|
"""
|
|
generates strings from XML
|
|
:param path2xml:
|
|
:param main_textfield:
|
|
:param cleaning_function:
|
|
:yields strings
|
|
"""
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for ticket in root:
|
|
for field in ticket:
|
|
if field.tag == main_textfield:
|
|
yield field.text
|
|
|
|
def generateMetadatafromTicketXML(path2xml, leave_out=['Beschreibung']):
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for ticket in root:
|
|
metadata = {}
|
|
for field in ticket:
|
|
if field.tag not in leave_out:
|
|
|
|
metadata[field.tag] = field.text
|
|
|
|
yield metadata
|
|
|
|
|
|
|
|
|
|
def processTextstream(textstream, funclist, parser=PARSER):
|
|
# input:str-stream output:str-stream
|
|
pipe = parser.pipe(textstream)
|
|
|
|
for doc in pipe:
|
|
tokens = [tok for tok in doc]
|
|
for f in funclist:
|
|
if 'bool' in str(f.__annotations__):
|
|
tokens = list(filter(f,tokens))
|
|
|
|
elif 'str' in str(f.__annotations__):
|
|
x=0
|
|
tokens = list(map(f, tokens))
|
|
#tokens = [f(tok.lower_) for tok in tokens] #purer text
|
|
doc = parser(" ".join(tokens)) #geparsed
|
|
tokens = [tok for tok in doc] #nur tokens
|
|
|
|
elif 'spacy.tokens.Doc' in str(f.__annotations__):
|
|
tokens = [tok for tok in f(tokens)]
|
|
|
|
|
|
|
|
yield " ".join([tok.lower_ for tok in tokens])
|
|
|
|
def processDictstream(dictstream, funcdict, parser=PARSER): #todo das selbe wie mit textstream idee: processDoc(doc,funcs)
|
|
for dic in dictstream:
|
|
result = {}
|
|
for key, value in dic.items():
|
|
if key in funcdict:
|
|
result[key] = funcdict[key](parser(value))
|
|
else:
|
|
result[key] = value
|
|
yield result
|
|
|
|
|
|
|
|
def keepPOS(pos_list) -> bool:
|
|
ret = lambda tok : tok.pos_ in pos_list
|
|
|
|
ret.__annotations__ = keepPOS.__annotations__
|
|
return ret
|
|
|
|
def removePOS(pos_list)-> bool:
|
|
ret = lambda tok : tok.pos_ not in pos_list
|
|
|
|
ret.__annotations__ = removePOS.__annotations__
|
|
return ret
|
|
|
|
def removeWords(words, keep=None)-> bool:
|
|
#todo in:str oder str-list
|
|
if hasattr(keep, '__iter__'):
|
|
for k in keep:
|
|
try:
|
|
words.remove(k)
|
|
except ValueError:
|
|
pass
|
|
|
|
ret = lambda tok : tok.lower_ not in words
|
|
|
|
ret.__annotations__ = removeWords.__annotations__
|
|
return ret
|
|
|
|
def keepENT(ent_list) -> bool:
|
|
ret = lambda tok : tok.ent_type_ in ent_list
|
|
|
|
ret.__annotations__ = keepENT.__annotations__
|
|
return ret
|
|
|
|
def removeENT(ent_list) -> bool:
|
|
ret = lambda tok: tok.ent_type_ not in ent_list
|
|
|
|
ret.__annotations__ = removeENT.__annotations__
|
|
return ret
|
|
|
|
|
|
|
|
def keepUniqueTokens() -> spacy.tokens.Doc:
|
|
ret = lambda doc: (set([tok.lower_ for tok in doc]))
|
|
|
|
ret.__annotations__ = keepUniqueTokens.__annotations__
|
|
return ret
|
|
|
|
|
|
def lemmatize() -> str:
|
|
ret = lambda tok: tok.lemma_
|
|
|
|
ret.__annotations__ = lemmatize.__annotations__
|
|
return ret
|
|
|
|
|
|
|
|
|
|
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
|
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
|
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
|
|
|
def replaceEmails(replace_with="EMAIL") -> str:
|
|
ret = lambda tok : emailFinder.sub(replace_with, tok.lower_)
|
|
|
|
ret.__annotations__ = replaceEmails.__annotations__
|
|
return ret
|
|
|
|
def replaceURLs(replace_with="URL") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_urls(tok.lower_,replace_with=replace_with)
|
|
#ret = lambda tok: urlFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = replaceURLs.__annotations__
|
|
return ret
|
|
|
|
def replaceTwitterMentions(replace_with="TWITTER_MENTION") -> str:
|
|
ret = lambda tok : mentionFinder.sub(replace_with,tok.lower_)
|
|
|
|
ret.__annotations__ = replaceTwitterMentions.__annotations__
|
|
return ret
|
|
|
|
def replaceNumbers(replace_with="NUMBER") -> str:
|
|
ret = lambda tok: textacy.preprocess.replace_numbers(tok.lower_, replace_with=replace_with)
|
|
|
|
ret.__annotations__ = replaceNumbers.__annotations__
|
|
return ret
|
|
|
|
def replacePhonenumbers(replace_with="PHONENUMBER",parser=PARSER):
|
|
ret = lambda tok: textacy.preprocess.replace_phone_numbers(tok.lower_, replace_with=replace_with)
|
|
|
|
ret.__annotations__ = replacePhonenumbers.__annotations__
|
|
return ret
|
|
|
|
|
|
def resolveAbbreviations():
|
|
pass #todo
|
|
|
|
|
|
|
|
|
|
|
|
def normalizeSynonyms(default_return_first_Syn=False) -> str:
|
|
ret = lambda tok : getFirstSynonym(tok.lower_, default_return_first_Syn=default_return_first_Syn)
|
|
|
|
ret.__annotations__ = normalizeSynonyms.__annotations__
|
|
return ret
|
|
|
|
def getFirstSynonym(word, thesaurus=THESAURUS, default_return_first_Syn=False):
|
|
if not isinstance(word, str):
|
|
return str(word)
|
|
|
|
word = word.lower()
|
|
|
|
# durch den thesaurrus iterieren
|
|
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
|
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
|
if word == syn:
|
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
|
else: # falls es ein satz ist
|
|
if word in syn:
|
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
|
return str(word) # zur Not, das ursrpüngliche Wort zurückgeben
|
|
|
|
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
|
|
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
|
# nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus
|
|
for w in syn.split(" "):
|
|
if not re.match(r'\([^)]+\)', w):
|
|
return w
|
|
|
|
if default_return_first_Syn:
|
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
|
for w in syn_block:
|
|
if not re.match(r'\([^)]+\)', w):
|
|
return w
|
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
|
|
|
|
|
|
|
stop_words=list(__import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)
|
|
|
|
|
|
|
|
clean_in_content=[
|
|
removePOS(["SPACE"]),
|
|
removeWords(["dezernat"]),
|
|
removePOS(["PUNCT"]),
|
|
replaceURLs(),
|
|
removePOS(["NUM"]),
|
|
lemmatize(),
|
|
removeWords(stop_words),
|
|
keepUniqueTokens(),
|
|
normalizeSynonyms()
|
|
]
|
|
|
|
|
|
|
|
## add files to textacy-corpus,
|
|
print("add texts to textacy-corpus...")
|
|
corpus.add_texts(
|
|
processTextstream(generateMainTextfromTicketXML(path2xml), clean_in_content),
|
|
)
|
|
|
|
printRandomDoc(corpus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|