refactoring.

This commit is contained in:
jannis.grundmann 2017-10-11 17:16:04 +02:00
parent 43955a17f2
commit 93e239756c
4 changed files with 584 additions and 1 deletions

251
corporization.py Normal file
View File

@ -0,0 +1,251 @@
# -*- coding: utf-8 -*-
import time
from datetime import datetime
import logging
from nltk.corpus import stopwords
import csv
import functools
import re
import xml.etree.ElementTree as ET
import spacy
import textacy
from scipy import *
import sys
csv.field_size_limit(sys.maxsize)
# ssh madonna "nohup /usr/bin/python3 -u /home/jannis.grundmann/PycharmProjects/topicModelingTickets/corporization.py &> /home/jannis.grundmann/PycharmProjects/topicModelingTickets/printout_corporization.log &"
path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_med.csv"
path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_small.csv"
#path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_mini.csv"
path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/de_tickets.csv"
path2en_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/en_tickets.csv"
content_collumn_name = "Description"
metaliste = [
"TicketNumber",
"Subject",
"CreatedDate",
"categoryName",
"Impact",
"Urgency",
"BenutzerID",
"VerantwortlicherID",
"EigentuemerID",
"Solution"
]
corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/"
corpus_name = "de_raw_corpus"
logfile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
# todo configuration file ?
"""
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
"""
# config logging
logging.basicConfig(filename=logfile, level=logging.INFO)
# logging.basicConfig(filename=config.get("filepath","logfile"), level=logging.INFO)
def printlog(string, level="INFO"):
"""log and prints"""
print(string)
if level == "INFO":
logging.info(string)
elif level == "DEBUG":
logging.debug(string)
elif level == "WARNING":
logging.warning(string)
def printRandomDoc(textacyCorpus):
import random
print()
printlog("len(textacyCorpus) = %i" % len(textacyCorpus))
randIndex = int((len(textacyCorpus) - 1) * random.random())
printlog("Index: {0} ; Text: {1} ; Metadata: {2}\n".format(randIndex, textacyCorpus[randIndex].text,
textacyCorpus[randIndex].metadata))
print()
def csv_to_textStream(path2csv: str, content_collumn_name: str):
"""
:param path2csv: string
:param content_collumn_name: string
:return: string-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
for i, lst in enumerate(stream):
if i == 0:
# look for desired column
for j, col in enumerate(lst):
if col == content_collumn_name:
content_collumn = j
else:
yield lst[content_collumn]
def csv_to_DictStream(path2csv: str, metalist: [str]):
"""
:param path2csv: string
:param metalist: list of strings
:return: dict-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
metaindices = []
metadata_temp = {}
for i, lst in enumerate(stream):
if i == 0:
for j, col in enumerate(lst): # geht bestimmt effizienter... egal, weil passiert nur einmal
for key in metalist:
if re.sub('[^a-zA-Z]+', '', key) == re.sub('[^a-zA-Z]+', '', col):
metaindices.append(j)
metadata_temp = dict(
zip(metalist, metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
else:
metadata = metadata_temp.copy()
for key, value in metadata.items():
metadata[key] = lst[value]
yield metadata
def save_corpus(corpus, corpus_path, corpus_name, parser):
"""
# save stringstore
stringstore_path = corpus_path + corpus_name + '_strings.json'
with open(stringstore_path, "w") as file:
parser.vocab.strings.dump(file)
#todo save vocab?
"""
# save parser
parser.save_to_directory(corpus_path + str(parser.lang) + '_parser')
# save content
contentpath = corpus_path + corpus_name + "_content.bin"
textacy.fileio.write_spacy_docs((doc.spacy_doc for doc in corpus), contentpath)
# save meta
metapath = corpus_path + corpus_name + "_meta.json"
textacy.fileio.write_json_lines((doc.metadata for doc in corpus), metapath)
##################################################################################################
def cleanTextstream(textstream):
"""
:param textstream: string-gen
:param parser: spacy-parser
:yield: string-gen
"""
for txt in textstream:
yield textacy.preprocess.normalize_whitespace(txt)
def cleanDictstream(dictstream):
"""
:param dictstream: dict-gen
:param parser: spacy-parser
:yield: dict-gen
"""
for dic in dictstream:
result = {}
for key, value in dic.items():
result[key] = textacy.preprocess.normalize_whitespace(value)
yield result
def main():
printlog("Corporization: {0}".format(datetime.now()))
path_csv_split = path2de_csv.split("/")
printlog(path_csv_split[len(path_csv_split) - 1])
path_csv_split = path2en_csv.split("/")
printlog(path_csv_split[len(path_csv_split) - 1])
start = time.time()
DE_PARSER = spacy.load("de")
EN_PARSER = spacy.load("en")
de_corpus = textacy.Corpus(DE_PARSER)
en_corpus = textacy.Corpus(EN_PARSER)
## add files to textacy-corpus,
printlog("Add texts to textacy-corpus")
de_corpus.add_texts(
cleanTextstream(csv_to_textStream(path2de_csv, content_collumn_name)),
cleanDictstream(csv_to_DictStream(path2de_csv, metaliste))
)
# leere docs aus corpus kicken
de_corpus.remove(lambda doc: len(doc) == 0)
for i in range(20):
printRandomDoc(de_corpus)
#save corpus
save_corpus(corpus=de_corpus,corpus_path=corpus_path,corpus_name=corpus_name,parser=DE_PARSER)
#todo das selbe mit en_corpus
end = time.time()
printlog("Time Elapsed Corporization:{0} min".format((end - start) / 60))
if __name__ == "__main__":
main()

286
init.py Normal file
View File

@ -0,0 +1,286 @@
# -*- coding: utf-8 -*-
from datetime import datetime
import time
import logging
from nltk.corpus import stopwords as nltk_stopwords
from collections import Counter
import csv
import re
import xml.etree.ElementTree as ET
import spacy
import textacy
from scipy import *
import sys
csv.field_size_limit(sys.maxsize)
import pickle
# todo configuration file ?
"""
config_ini = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
"""
# config logging
logfile = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/topicModelTickets.log"
logging.basicConfig(filename=logfile, level=logging.INFO)
DE_PARSER = spacy.load("de")
EN_PARSER = spacy.load("en")
def replaceRockDots():
return lambda string: re.sub(r'[ß]', "ss",
(re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
def printlog(string, level="INFO"):
"""log and prints"""
print(string)
if level == "INFO":
logging.info(string)
elif level == "DEBUG":
logging.debug(string)
elif level == "WARNING":
logging.warning(string)
def save_obj(obj, path):
with open(path + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(path ):
with open(path + '.pkl', 'rb') as f:
return pickle.load(f)
def create_lemma_dict(lemmalist):
lemma_dict = {}
for line in lemmalist:
lem_word_pair = line.split()
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
lemma_dict[word] = lemma
return lemma_dict
def build_thesaurus(path2lexicalentries, path2synsets):
lextree = ET.parse(path2lexicalentries, ET.XMLParser(encoding="utf-8"))
syntree = ET.parse(path2synsets, ET.XMLParser(encoding="utf-8"))
lexroot = lextree.getroot()
synroot = syntree.getroot()
thesaurus = []
for r in synroot:
for element in r:
if element.tag == "Synset":
sysnet = []
attrib = element.attrib
id = attrib["id"]
for ro in lexroot:
for elem in ro:
if elem.tag == "LexicalEntry":
subs_dicts = [subentry.attrib for subentry in elem]
# <class 'list'>: [{'partOfSpeech': 'n', 'writtenForm': 'Kernspaltung'}, {'synset': 'de-1-n', 'id': 'w1_1-n'}]
dic = {k: v for x in subs_dicts for k, v in x.items()} # to one dict
if "synset" in dic.keys():
if dic["synset"] == id:
string = (dic["writtenForm"])
# replaceRockDots
string = re.sub(r'[ß]', "ss", string)
string = re.sub(r'[ö]', "oe", string)
string = re.sub(r'[ü]', "ue", string)
string = re.sub(r'[ä]', "ae", string)
# alle punkte raus
string = re.sub(r'[.]', "", string)
# alles in klammern raus
string = re.sub(r"\((.*)\)", " ", string)
# längeres leerzeichen normalisieren
string = textacy.preprocess.normalize_whitespace(string)
sysnet.append(string.lower().strip())
# nach anzhal der wörter in den strings sortieren
sysnet.sort(key=lambda x: len(x.split()))
if len(sysnet) != 0:
# todo warum sind manche leer?
thesaurus.append(sysnet)
return thesaurus
#todo thesaurus in dictionary
def create_stopwordlist():
de_stop_words1 = list(map(replaceRockDots(),
list(
map(textacy.preprocess.normalize_whitespace,
textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/de_stop_words.txt")
)
)
)
)
de_stop_words2 = list(map(replaceRockDots(),list(set(nltk_stopwords.words('german')))))
de_stop_words3 = list(map(replaceRockDots(),list(__import__("spacy." + DE_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)))
de_stop_words4 = list(map(replaceRockDots(),list(textacy.fileio.read_file_lines("stopwords-de.txt"))))
de_stop_words = list(set(de_stop_words1 + de_stop_words2 + de_stop_words3 + de_stop_words4))
return de_stop_words
#todo en_stop_words= set(list(__import__("spacy." + EN_PARSER.lang, globals(), locals(), ['object']).STOP_WORDS)+ list(set(nltk_stopwords.words('english'))))
########################## Spellchecking ##########################################
# http://norvig.com/spell-correct.html
# http://wortschatz.uni-leipzig.de/en/download
def words(text): return re.findall(r'\w+', text.lower())
##################################################################################################
# ziel: dictionaries für thesaurus, correctwordliste und lemmas als ladbare .json
# außerdem saubere stoppwortliste und nomenliste
# THESAURUS
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries.xml"
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
lexicalentries = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lexicalentries_small.xml"
synsets = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/synsets.xml"
# SPELLCHECKING
path2words = '/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt'
path2lemmadict = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemma_dict.pkl"
path2wordlist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/words_list.pkl"
path2thesauruslist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/thesaurus_list.pkl"
path2stopwordlist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/stopwords_list.pkl"
path2NOUNSlist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nouns_list.pkl"
path2firstnameslist = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames_list.pkl"
def main():
start = time.time()
printlog("Init: {0}".format(datetime.now()))
printlog("create and save lemma_dict")
LEMMAS = list(
textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))
lemma_dict = create_lemma_dict(LEMMAS)
save_obj(lemma_dict, path2lemmadict)
printlog("Build and save Wordlist for Spellchecking")
WORDS = Counter(words(open(path2words).read()))
save_obj(WORDS, path2wordlist)
printlog("Build and save Thesaurus")
THESAURUS = build_thesaurus(path2lexicalentries=lexicalentries, path2synsets=synsets)
print(THESAURUS[0:10])
save_obj(THESAURUS, path2thesauruslist)
printlog("Build and save stoppwortliste")
de_stop_words = create_stopwordlist()
save_obj(de_stop_words, path2stopwordlist)
printlog("Build and save nomenliste")
NOUNS = list(textacy.fileio.read_file_lines(
"/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen2.txt")) + list(
textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/nomen.txt"))
NOUNS = list(map(textacy.preprocess.normalize_whitespace, NOUNS))
save_obj(NOUNS, path2NOUNSlist)
printlog("Build and save fistnameslist")
VORNAMEN = list(map(textacy.preprocess.normalize_whitespace, textacy.fileio.read_file_lines(
"/home/jannis.grundmann/PycharmProjects/topicModelingTickets/firstnames.txt")))
save_obj(VORNAMEN, path2firstnameslist)
end = time.time()
printlog("Time Elapsed Preprocessing:{0} min".format((end - start) / 60))
if __name__ == "__main__":
main()

View File

@ -12,6 +12,8 @@ path2de_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-E
path2en_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/en_tickets.csv" path2en_csv = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/en_tickets.csv"
#idee roh-corpus (nur whitespace weg) speichern -> pregeprocesster corpus -> damit arbeiten
path_csv_split = path2de_csv.split("/") path_csv_split = path2de_csv.split("/")
print(path_csv_split[len(path_csv_split) - 1]) print(path_csv_split[len(path_csv_split) - 1])
@ -124,7 +126,15 @@ specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORE
hardSFinder = re.compile(r'[ß]', re.IGNORECASE) hardSFinder = re.compile(r'[ß]', re.IGNORECASE)
import pickle
def save_obj(obj, path):
with open(path + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(path ):
with open(path + '.pkl', 'rb') as f:
return pickle.load(f)
def printlog(string, level="INFO"): def printlog(string, level="INFO"):
"""log and prints""" """log and prints"""
print(string) print(string)

View File

@ -52,8 +52,44 @@ corpus.add_texts(
print(corpus) print(corpus)
""" """
import pickle
def save_obj(obj, path):
with open(path + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(path ):
with open(path + '.pkl', 'rb') as f:
return pickle.load(f)
lemmalist = list(map(textacy.preprocess.normalize_whitespace,
list(textacy.fileio.read_file_lines("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/lemmas.txt"))))
lemma_dict = {}
for line in lemmalist:
lem_word_pair = line.split()
lemma = lem_word_pair[0].strip().lower()
word = lem_word_pair[1].strip().lower()
lemma_dict[word] = lemma
print(lemma_dict["abbekomme"])
save_obj(lemma_dict, "test_dictionies")
loaded = load_obj("test_dictionies")
print(loaded["abbekomme"])
"""
from postal.parser import parse_address from postal.parser import parse_address
@ -63,7 +99,7 @@ print(parse_address(address))
address = "Technische Universität Dortmund Maschinenbau/Lehrstuhl für Förder- und Lagerwesen LogistikCampus Joseph-von-Fraunhofer-Str. 2-4 D-44227 Dortmund " address = "Technische Universität Dortmund Maschinenbau/Lehrstuhl für Förder- und Lagerwesen LogistikCampus Joseph-von-Fraunhofer-Str. 2-4 D-44227 Dortmund "
print(parse_address(address)) print(parse_address(address))
"""