284 lines
7.4 KiB
Python
284 lines
7.4 KiB
Python
# -*- coding: utf-8 -*-
|
||
import csv
|
||
import random
|
||
import re
|
||
|
||
import spacy
|
||
import textacy
|
||
import sys
|
||
|
||
import xml.etree.ElementTree as ET
|
||
"""
|
||
import keras
|
||
import numpy as np
|
||
from keras.layers import Dense, SimpleRNN, LSTM, TimeDistributed, Dropout
|
||
from keras.models import Sequential
|
||
import keras.backend as K
|
||
"""
|
||
csv.field_size_limit(sys.maxsize)
|
||
|
||
|
||
def printRandomDoc(textacyCorpus):
|
||
print()
|
||
print("len(textacyCorpus) = %i" % len(textacyCorpus))
|
||
randIndex = int((len(textacyCorpus) - 1) * random.random())
|
||
print("Index: {0} ; Text: {1} ; Metadata: {2}".format(randIndex, textacyCorpus[randIndex].text, textacyCorpus[randIndex].metadata))
|
||
print()
|
||
|
||
|
||
def getFirstSynonym(word, thesaurus_gen):
|
||
|
||
word = word.lower()
|
||
# TODO word cleaning https://stackoverflow.com/questions/3939361/remove-specific-characters-from-a-string-in-python
|
||
|
||
|
||
# durch den thesaurrus iterieren
|
||
for syn_block in thesaurus_gen: # syn_block ist eine liste mit Synonymen
|
||
|
||
# durch den synonymblock iterieren
|
||
for syn in syn_block:
|
||
syn = syn.lower().split(" ") if not re.match(r'\A[\w-]+\Z', syn) else syn # aus synonym mach liste (um evtl. sätze zu identifieziren)
|
||
|
||
# falls das wort in dem synonym enthalten ist (also == einem Wort in der liste ist)
|
||
if word in syn:
|
||
|
||
# Hauptform suchen
|
||
if "auptform" in syn:
|
||
# nicht ausgeben, falls es in Klammern steht
|
||
for w in syn:
|
||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
||
return w
|
||
|
||
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
||
if len(syn) == 1:
|
||
w = syn[0]
|
||
if not re.match(r'\([^)]+\)', w) and w is not None:
|
||
return w
|
||
|
||
return word # zur Not die eingabe ausgeben
|
||
|
||
|
||
def cleanText(string,custom_stopwords=None, custom_symbols=None, custom_words=None, customPreprocessing=None, lemmatize=False):
|
||
import re
|
||
|
||
# use preprocessing
|
||
if customPreprocessing is not None:
|
||
string = customPreprocessing(string)
|
||
|
||
|
||
|
||
if custom_stopwords is not None:
|
||
custom_stopwords = custom_stopwords
|
||
else:
|
||
custom_stopwords = []
|
||
|
||
if custom_words is not None:
|
||
custom_words = custom_words
|
||
else:
|
||
custom_words = []
|
||
|
||
if custom_symbols is not None:
|
||
custom_symbols = custom_symbols
|
||
else:
|
||
custom_symbols = []
|
||
|
||
|
||
# custom stoplist
|
||
# https://stackoverflow.com/questions/9806963/how-to-use-pythons-import-function-properly-import
|
||
stop_words = __import__("spacy." + PARSER.lang, globals(), locals(), ['object']).STOP_WORDS
|
||
|
||
stoplist =list(stop_words) + custom_stopwords
|
||
# List of symbols we don't care about either
|
||
symbols = ["-----","---","...","“","”",".","-","<",">",",","?","!","..","n’t","n't","|","||",";",":","…","’s","'s",".","(",")","[","]","#"] + custom_symbols
|
||
|
||
|
||
|
||
# get rid of newlines
|
||
string = string.strip().replace("\n", " ").replace("\r", " ")
|
||
|
||
# replace twitter
|
||
mentionFinder = re.compile(r"@[a-z0-9_]{1,15}", re.IGNORECASE)
|
||
string = mentionFinder.sub("MENTION", string)
|
||
|
||
# replace emails
|
||
emailFinder = re.compile(r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b", re.IGNORECASE)
|
||
string = emailFinder.sub("EMAIL", string)
|
||
|
||
# replace urls
|
||
urlFinder = re.compile(r"^(?:https?:\/\/)?(?:www\.)?[a-zA-Z0-9./]+$", re.IGNORECASE)
|
||
string = urlFinder.sub("URL", string)
|
||
|
||
# replace HTML symbols
|
||
string = string.replace("&", "and").replace(">", ">").replace("<", "<")
|
||
|
||
|
||
|
||
|
||
# parse with spaCy
|
||
spacy_doc = PARSER(string)
|
||
tokens = []
|
||
|
||
added_entities = ["WORK_OF_ART","ORG","PRODUCT", "LOC"]#,"PERSON"]
|
||
added_POS = ["NOUN", "NUM" ]#,"VERB","ADJ"] #IDEE NUM mit in den Corpus aufnehmen, aber fürs TopicModeling nur Nomen http://aclweb.org/anthology/U15-1013
|
||
|
||
# append Tokens to a list
|
||
for tok in spacy_doc:
|
||
if tok.pos_ in added_POS:
|
||
if lemmatize:
|
||
tokens.append(tok.lemma_.lower().strip())
|
||
else:
|
||
tokens.append(tok.text.lower().strip())
|
||
|
||
# add entities
|
||
if tok.ent_type_ in added_entities:
|
||
tokens.append(tok.text.lower())
|
||
|
||
|
||
|
||
# remove stopwords
|
||
tokens = [tok for tok in tokens if tok not in stoplist]
|
||
|
||
# remove symbols
|
||
tokens = [tok for tok in tokens if tok not in symbols]
|
||
|
||
# remove custom_words
|
||
tokens = [tok for tok in tokens if tok not in custom_words]
|
||
|
||
# remove single characters
|
||
tokens = [tok for tok in tokens if len(tok)>1]
|
||
|
||
# remove large strings of whitespace
|
||
while "" in tokens:
|
||
tokens.remove("")
|
||
while " " in tokens:
|
||
tokens.remove(" ")
|
||
while "\n" in tokens:
|
||
tokens.remove("\n")
|
||
while "\n\n" in tokens:
|
||
tokens.remove("\n\n")
|
||
"""
|
||
tokenz = []
|
||
for tok in tokens:
|
||
tokenz.append(str(getFirstSynonym(tok,THESAURUS_gen)))
|
||
tokens = tokenz
|
||
"""
|
||
tokens = [str(getFirstSynonym(tok,THESAURUS_gen)) for tok in tokens]
|
||
|
||
return " ".join(tokens)
|
||
|
||
|
||
def generateTextfromXML(path2xml, clean=True, textfield='Beschreibung'):
|
||
import xml.etree.ElementTree as ET
|
||
|
||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||
|
||
root = tree.getroot()
|
||
|
||
for subject in root.iter(textfield):
|
||
if clean:
|
||
yield cleanText(subject.text)
|
||
else:
|
||
yield subject.text
|
||
|
||
def generateMetadatafromXML(path2xml, keys=["Loesung","Kategorie","Zusammenfassung"]):
|
||
import xml.etree.ElementTree as ET
|
||
|
||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||
|
||
root = tree.getroot()
|
||
|
||
metadata = dict.fromkeys(keys)
|
||
|
||
|
||
for ticket in root.findall('ticket'):
|
||
for key in metadata:
|
||
metadata[key] = ticket.find(key).text
|
||
|
||
yield metadata
|
||
|
||
def generateFromXML(path2xml, clean=True, textfield='Beschreibung'):
|
||
import xml.etree.ElementTree as ET
|
||
|
||
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
||
root = tree.getroot()
|
||
|
||
for ticket in root:
|
||
metadata = {}
|
||
text = "ERROR"
|
||
for field in ticket:
|
||
if field.tag == textfield:
|
||
if clean:
|
||
text = cleanText(field.text)
|
||
else:
|
||
text = field.text
|
||
else:
|
||
metadata[field.tag] = field.text
|
||
yield text, metadata
|
||
|
||
|
||
####################'####################'####################'####################'####################'##############
|
||
|
||
|
||
DATAPATH = "ticketSamples.xml"
|
||
DATAPATH_thesaurus = "openthesaurus.csv"
|
||
|
||
LANGUAGE = 'de'
|
||
|
||
|
||
####################'####################'####################'####################'####################'##############
|
||
|
||
PARSER = spacy.load(LANGUAGE)
|
||
THESAURUS_gen = textacy.fileio.read_csv(DATAPATH_thesaurus, delimiter=";") # generator [[a,b,c,..],[a,b,c,..],...]
|
||
|
||
|
||
## files to textacy-corpus
|
||
textacyCorpus = textacy.Corpus(PARSER)
|
||
|
||
print("add texts to textacy-corpus...")
|
||
#textacyCorpus.add_texts(texts=generateTextfromXML(DATAPATH), metadatas=generateMetadatafromXML(DATAPATH))
|
||
for txt, dic in generateFromXML(DATAPATH):
|
||
textacyCorpus.add_text(txt,dic)
|
||
|
||
|
||
|
||
|
||
|
||
print(textacyCorpus[2].text)
|
||
#printRandomDoc(textacyCorpus)
|
||
#print(textacyCorpus[len(textacyCorpus)-1].text)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|